Suppr超能文献

体内定量分析肠道细菌的营养偏好。

Gut bacterial nutrient preferences quantified in vivo.

机构信息

Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

出版信息

Cell. 2022 Sep 1;185(18):3441-3456.e19. doi: 10.1016/j.cell.2022.07.020.

Abstract

Great progress has been made in understanding gut microbiomes' products and their effects on health and disease. Less attention, however, has been given to the inputs that gut bacteria consume. Here, we quantitatively examine inputs and outputs of the mouse gut microbiome, using isotope tracing. The main input to microbial carbohydrate fermentation is dietary fiber and to branched-chain fatty acids and aromatic metabolites is dietary protein. In addition, circulating host lactate, 3-hydroxybutyrate, and urea (but not glucose or amino acids) feed the gut microbiome. To determine the nutrient preferences across bacteria, we traced into genus-specific bacterial protein sequences. We found systematic differences in nutrient use: most genera in the phylum Firmicutes prefer dietary protein, Bacteroides dietary fiber, and Akkermansia circulating host lactate. Such preferences correlate with microbiome composition changes in response to dietary modifications. Thus, diet shapes the microbiome by promoting the growth of bacteria that preferentially use the ingested nutrients.

摘要

在理解肠道微生物组的产物及其对健康和疾病的影响方面已经取得了很大的进展。然而,人们对肠道细菌消耗的输入物关注较少。在这里,我们使用同位素示踪法定量研究了小鼠肠道微生物组的输入和输出。微生物碳水化合物发酵的主要输入物是膳食纤维,支链脂肪酸和芳香代谢物的主要输入物是膳食蛋白质。此外,循环宿主的乳酸、3-羟基丁酸和尿素(而不是葡萄糖或氨基酸)为肠道微生物组提供营养。为了确定细菌之间的营养偏好,我们追踪到属特异性细菌蛋白序列。我们发现营养利用存在系统性差异:厚壁菌门的大多数属更喜欢膳食蛋白质、拟杆菌门的膳食纤维和阿克曼氏菌属的循环宿主乳酸。这种偏好与响应饮食改变的微生物组组成变化相关。因此,饮食通过促进优先利用摄入营养物质的细菌的生长来塑造微生物组。

相似文献

1
Gut bacterial nutrient preferences quantified in vivo.
Cell. 2022 Sep 1;185(18):3441-3456.e19. doi: 10.1016/j.cell.2022.07.020.
3
It's the fiber, not the fat: significant effects of dietary challenge on the gut microbiome.
Microbiome. 2020 Feb 11;8(1):15. doi: 10.1186/s40168-020-0791-6.
5
Systematic review of the effects of the intestinal microbiota on selected nutrients and non-nutrients.
Eur J Nutr. 2018 Feb;57(1):25-49. doi: 10.1007/s00394-017-1546-4. Epub 2017 Oct 30.
10

引用本文的文献

1
Parental diet and offspring health: a role for the gut microbiome via epigenetics.
Nat Rev Gastroenterol Hepatol. 2025 Sep 3. doi: 10.1038/s41575-025-01106-3.
2
Fasting elicits gut microbiome signature changes that extend to type 1 diabetes patients.
Front Endocrinol (Lausanne). 2025 Aug 13;16:1623800. doi: 10.3389/fendo.2025.1623800. eCollection 2025.
3
Gut microbiota-mediated modulation of host amino acid availability and metabolism.
Gut Microbes. 2025 Dec;17(1):2552345. doi: 10.1080/19490976.2025.2552345. Epub 2025 Aug 28.
5
Amino acid competition shapes Acinetobacter baumannii gut carriage.
Cell Host Microbe. 2025 Aug 13;33(8):1396-1411.e9. doi: 10.1016/j.chom.2025.07.003. Epub 2025 Aug 4.
7
The human gut microbiota is associated with host lifestyle: a comprehensive narrative review.
Front Microbiol. 2025 Jun 23;16:1549160. doi: 10.3389/fmicb.2025.1549160. eCollection 2025.
8
Understanding disease-associated metabolic changes in human colonic epithelial cells using the iColonEpithelium metabolic reconstruction.
PLoS Comput Biol. 2025 Jul 3;21(7):e1013253. doi: 10.1371/journal.pcbi.1013253. eCollection 2025 Jul.
10
Strain-specific galactose utilization by commensal E. coli mitigates Salmonella establishment in the gut.
PLoS Pathog. 2025 Jun 27;21(6):e1013232. doi: 10.1371/journal.ppat.1013232. eCollection 2025 Jun.

本文引用的文献

3
A metabolomics pipeline for the mechanistic interrogation of the gut microbiome.
Nature. 2021 Jul;595(7867):415-420. doi: 10.1038/s41586-021-03707-9. Epub 2021 Jul 14.
4
Quantitative flux analysis in mammals.
Nat Metab. 2021 Jul;3(7):896-908. doi: 10.1038/s42255-021-00419-2. Epub 2021 Jul 1.
5
Impact of dietary carbohydrate type and protein-carbohydrate interaction on metabolic health.
Nat Metab. 2021 Jun;3(6):810-828. doi: 10.1038/s42255-021-00393-9. Epub 2021 Jun 8.
6
Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy.
Science. 2020 Sep 18;369(6510):1481-1489. doi: 10.1126/science.abc3421. Epub 2020 Aug 13.
7
A metabolic pathway for bile acid dehydroxylation by the gut microbiome.
Nature. 2020 Jun;582(7813):566-570. doi: 10.1038/s41586-020-2396-4. Epub 2020 Jun 17.
8
Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells.
Nature. 2020 May;581(7809):475-479. doi: 10.1038/s41586-020-2193-0. Epub 2020 Apr 15.
9
Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate.
Nature. 2020 Mar;579(7800):586-591. doi: 10.1038/s41586-020-2101-7. Epub 2020 Mar 18.
10
A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors.
Cell. 2020 Mar 5;180(5):862-877.e22. doi: 10.1016/j.cell.2020.02.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验