Suppr超能文献

软件工程对预测公共卫生问题的意义:以沙特阿拉伯为例。

The Significance of Software Engineering to Forecast the Public Health Issues: A Case of Saudi Arabia.

机构信息

Software Engineering Department, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia.

出版信息

Front Public Health. 2022 Aug 18;10:900075. doi: 10.3389/fpubh.2022.900075. eCollection 2022.

Abstract

In the recent years, public health has become a core issue addressed by researchers. However, because of our limited knowledge, studies mainly focus on the causes of public health issues. On the contrary, this study provides forecasts of public health issues using software engineering techniques and determinants of public health. Our empirical findings show significant impacts of carbon emission and health expenditure on public health. The results confirm that support vector machine (SVM) outperforms the forecasting of public health when compared to multiple linear regression (MLR) and artificial neural network (ANN) technique. The findings are valuable to policymakers in forecasting public health issues and taking preemptive actions to address the relevant health concerns.

摘要

近年来,公共卫生已成为研究人员关注的核心问题。然而,由于我们知识有限,研究主要集中在公共卫生问题的原因上。与此相反,本研究使用软件工程技术和公共卫生决定因素对公共卫生问题进行预测。我们的实证结果表明,碳排放和卫生支出对公共卫生有显著影响。结果证实,与多元线性回归(MLR)和人工神经网络(ANN)技术相比,支持向量机(SVM)在公共卫生预测方面表现更优。这些发现对政策制定者预测公共卫生问题并采取预防措施解决相关健康问题具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b926/9433742/5d139b76afa3/fpubh-10-900075-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验