Suppr超能文献

机器学习分类器在哮喘病风险预测中的比较研究。

A comparative study of machine learning classifiers for risk prediction of asthma disease.

机构信息

Agri. & biophotonics Division, National Institute of Lasers & Optronics, Islamabad, Pakistan.

Department of Physics, Islamia College Peshawar, Pakistan.

出版信息

Photodiagnosis Photodyn Ther. 2019 Dec;28:292-296. doi: 10.1016/j.pdpdt.2019.10.011. Epub 2019 Oct 12.

Abstract

Asthma is a chronic disease characterized by wheezing, chest tightening and difficulty in breathing due to inflammation of lung airways. Early risk prediction of asthma is crucial for proper and effective management. This study presents the use of machine learning approach for risk prediction of asthma by evaluating Raman spectral variations between asthmatic as well as healthy sera samples. Specifically, Raman spectra from 150 asthma and 52 healthy control blood sera samples were acquired. Spectral analyses illustrated significant spectral variations (p < 0.0001) in the asthmatic samples when compared with healthy sera. The existing spectral differences were further exploited by using artificial neural network (ANN) along with support vector machine (SVM) and random forest (RF) algorithms towards machine-assisted classification of the two groups. Quantitative comparison of the evaluation metrics of the classification algorithms showed superior performance of SVM model. Our results indicate that Raman spectroscopy in tandem with SVM can be used in the diagnosis and machine-assisted classification of asthma patients with promising accuracy.

摘要

哮喘是一种慢性疾病,其特征是由于肺部气道炎症而导致喘息、胸部紧绷和呼吸困难。对哮喘进行早期风险预测对于进行适当和有效的管理至关重要。本研究通过评估哮喘和健康血清样本之间的拉曼光谱变化,提出了一种使用机器学习方法进行哮喘风险预测的方法。具体来说,从 150 例哮喘和 52 例健康对照血清样本中获得了拉曼光谱。光谱分析表明,与健康血清相比,哮喘样本中存在显著的光谱变化(p < 0.0001)。通过使用人工神经网络(ANN)以及支持向量机(SVM)和随机森林(RF)算法进一步利用现有的光谱差异,对两组进行机器辅助分类。分类算法的评估指标的定量比较表明 SVM 模型具有优越的性能。我们的结果表明,拉曼光谱与 SVM 联合使用可以用于哮喘患者的诊断和机器辅助分类,具有很高的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验