Suppr超能文献

基于CD8T细胞计数的小肝癌微创治疗列线图模型的建立

Establishment of Nomogram Model for Minimally Invasive Treatment of Small Hepatocellular Carcinoma Based on CD8T Cell Counts.

作者信息

Pu Qing, Yu Lihua, Wang Xinhui, Yan Huiwen, Xie Yuqing, Du Juan, Yang Zhiyun

机构信息

Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China.

Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, People's Republic of China.

出版信息

Onco Targets Ther. 2022 Aug 31;15:925-940. doi: 10.2147/OTT.S373631. eCollection 2022.

Abstract

PURPOSE

Minimally invasive treatment of small hepatocellular carcinoma (HCC) is the main way of treatment, which can cause the change of HCC immune microenvironment. T lymphocytes are an important part of the immune microenvironment and may be powerful predictors of prognosis. The purpose of this study was to explore the effect of T lymphocytes on the prognosis of HCC and establish a prognostic model.

PATIENTS AND METHODS

We conducted a retrospective study of 300 patients with small HCC and developed a clinical prediction model. The selection of modeling variables was performed by combining backward stepwise Cox regression using Akaike's Information Criteria (AIC) and the Least Absolute Shrinkage and Selection Operator (LASSO) regression. Establish a dynamic nomogram model to predict 1-, 2-, and 3-year overall survival (OS). Receiver operating characteristic curve (ROC curve) was used to verify the model discriminative ability, calibration curve was used to examine the model calibration ability, and decision curve analysis (DCA) was used to evaluate the clinical value.

RESULTS

The nomogram to predict the OS of small HCC includes the following four variables: aspartate aminotransferase (AST), alpha fetoprotein (AFP), C-reactive protein (CRP) and CD8T cell counts, represented liver function index, tumor-related index, Inflammatory index and immune-related index, respectively. The area under the receiver operating characteristic curves (AUC) of predicting 1-, 2-, and 3-year overall survival were 0.846, 0.824 and 0.812, and the model was excellent in discrimination, calibration and clinical applicability.

CONCLUSION

Our study provides a nomogram based on CD8T cell counts that can help predict the prognosis of small HCC after minimally invasive treatment, which suggests that T lymphocytes can be used as a prognostic factor for HCC. Larger trials are needed to verify our results.

摘要

目的

小肝细胞癌(HCC)的微创治疗是主要治疗方式,其可导致HCC免疫微环境发生改变。T淋巴细胞是免疫微环境的重要组成部分,可能是强有力的预后预测指标。本研究旨在探讨T淋巴细胞对HCC预后的影响并建立预后模型。

患者与方法

我们对300例小HCC患者进行了回顾性研究并建立了临床预测模型。通过结合使用赤池信息准则(AIC)的向后逐步Cox回归和最小绝对收缩与选择算子(LASSO)回归来选择建模变量。建立动态列线图模型以预测1年、2年和3年总生存率(OS)。采用受试者工作特征曲线(ROC曲线)验证模型的判别能力,校准曲线检验模型的校准能力,决策曲线分析(DCA)评估临床价值。

结果

预测小HCC患者OS的列线图包括以下四个变量:天冬氨酸转氨酶(AST)、甲胎蛋白(AFP)、C反应蛋白(CRP)和CD8T细胞计数,分别代表肝功能指标、肿瘤相关指标、炎症指标和免疫相关指标。预测1年、2年和3年总生存率的受试者工作特征曲线下面积(AUC)分别为0.846、0.824和0.812,该模型在判别、校准和临床适用性方面表现优异。

结论

我们的研究提供了一种基于CD8T细胞计数的列线图,可帮助预测微创治疗后小HCC的预后,这表明T淋巴细胞可作为HCC的预后因素。需要更大规模的试验来验证我们的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/328d/9441171/f3befd4b4bed/OTT-15-925-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验