Suppr超能文献

人类胰腺的 3D 染色质图谱揭示了 T2D 风险的谱系特异性调控结构。

3D chromatin maps of the human pancreas reveal lineage-specific regulatory architecture of T2D risk.

机构信息

Division of Human Genetics and Endocrinology & Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Spatial and Functional Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.

Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Cell Metab. 2022 Sep 6;34(9):1394-1409.e4. doi: 10.1016/j.cmet.2022.08.014.

Abstract

Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.

摘要

三维(3D)染色质组织图谱有助于剖析细胞类型特异性的基因调控程序。此外,3D 染色质图谱通过将远端调控区域和遗传风险变异与各自的靶基因联系起来,有助于阐明复杂遗传疾病的发病机制。为了了解糖尿病风险的细胞类型特异性调控结构,我们使用单细胞 RNA-seq、单细胞 ATAC-seq 和分选细胞的高分辨率 Hi-C 技术,生成了人类胰腺腺泡、α 和β细胞的转录组学和 3D 表观基因组图谱。对这些图谱的比较揭示了不同的 A/B(开放/关闭)染色质区室化、染色质环化以及转录因子介导的细胞类型特异性基因调控程序的控制。我们使用胰腺 3D 染色质图谱在 194 个 2 型糖尿病全基因组关联信号中总共鉴定出了 4750 对假定的因果变异-靶基因对。我们发现候选因果变异与其假定的靶效应基因之间的联系是细胞类型分层的,这强调了α 和腺泡细胞在糖尿病发病机制中以前被低估的作用。

相似文献

1
3D chromatin maps of the human pancreas reveal lineage-specific regulatory architecture of T2D risk.
Cell Metab. 2022 Sep 6;34(9):1394-1409.e4. doi: 10.1016/j.cmet.2022.08.014.
4
Genetic regulatory signatures underlying islet gene expression and type 2 diabetes.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2301-2306. doi: 10.1073/pnas.1621192114. Epub 2017 Feb 13.
5
Human pancreatic islet three-dimensional chromatin architecture provides insights into the genetics of type 2 diabetes.
Nat Genet. 2019 Jul;51(7):1137-1148. doi: 10.1038/s41588-019-0457-0. Epub 2019 Jun 28.
6
Sex-specific regulatory architecture of pancreatic islets from subjects with and without type 2 diabetes.
EMBO J. 2024 Dec;43(24):6364-6382. doi: 10.1038/s44318-024-00313-z. Epub 2024 Nov 20.
10
Genome-wide analysis of PDX1 target genes in human pancreatic progenitors.
Mol Metab. 2018 Mar;9:57-68. doi: 10.1016/j.molmet.2018.01.011. Epub 2018 Jan 31.

引用本文的文献

2
Med14 phosphorylation shapes genomic response to GLP-1 Agonist.
bioRxiv. 2025 Jun 23:2025.06.17.660196. doi: 10.1101/2025.06.17.660196.
4
DiabetesOmic: A comprehensive multi-omics diabetes database.
Comput Struct Biotechnol J. 2025 May 9;27:2147-2154. doi: 10.1016/j.csbj.2025.05.008. eCollection 2025.
5
Diabetes mellitus polygenic risk scores: heterogeneity and clinical translation.
Nat Rev Endocrinol. 2025 Jun 4. doi: 10.1038/s41574-025-01132-w.
9
Discovery of therapeutic targets in cardiovascular diseases using high-throughput chromosome conformation capture (Hi-C).
Front Genet. 2025 Mar 13;16:1515010. doi: 10.3389/fgene.2025.1515010. eCollection 2025.
10
Application and Progression of Single-Cell RNA Sequencing in Diabetes Mellitus and Diabetes Complications.
J Diabetes Res. 2025 Mar 18;2025:3248350. doi: 10.1155/jdr/3248350. eCollection 2025.

本文引用的文献

2
An effector index to predict target genes at GWAS loci.
Hum Genet. 2022 Aug;141(8):1431-1447. doi: 10.1007/s00439-022-02434-z. Epub 2022 Feb 11.
3
The trans-ancestral genomic architecture of glycemic traits.
Nat Genet. 2021 Jun;53(6):840-860. doi: 10.1038/s41588-021-00852-9. Epub 2021 May 31.
4
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics.
Nature. 2021 Jun;594(7863):398-402. doi: 10.1038/s41586-021-03552-w. Epub 2021 May 19.
5
Genome-wide enhancer maps link risk variants to disease genes.
Nature. 2021 May;593(7858):238-243. doi: 10.1038/s41586-021-03446-x. Epub 2021 Apr 7.
6
Comprehensive analysis of single cell ATAC-seq data with SnapATAC.
Nat Commun. 2021 Feb 26;12(1):1337. doi: 10.1038/s41467-021-21583-9.
7
FoxA-dependent demethylation of DNA initiates epigenetic memory of cellular identity.
Dev Cell. 2021 Mar 8;56(5):602-612.e4. doi: 10.1016/j.devcel.2021.02.005. Epub 2021 Feb 25.
10
A Multi-omic Integrative Scheme Characterizes Tissues of Action at Loci Associated with Type 2 Diabetes.
Am J Hum Genet. 2020 Dec 3;107(6):1011-1028. doi: 10.1016/j.ajhg.2020.10.009. Epub 2020 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验