Suppr超能文献

纳米颗粒递送过程中蛋白质冠层的阴阳两面

The Yin and Yang of the protein corona on the delivery journey of nanoparticles.

作者信息

Wang Yi-Feng, Zhou Yaxin, Sun JiaBei, Wang Xiaotong, Jia Yaru, Ge Kun, Yan Yan, Dawson Kenneth A, Guo Shutao, Zhang Jinchao, Liang Xing-Jie

机构信息

Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumor Microenvironment, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260 China.

Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190 China.

出版信息

Nano Res. 2023;16(1):715-734. doi: 10.1007/s12274-022-4849-6. Epub 2022 Sep 16.

Abstract

Nanoparticles-based drug delivery systems have attracted significant attention in biomedical fields because they can deliver loaded cargoes to the target site in a controlled manner. However, tremendous challenges must still be overcome to reach the expected targeting and therapeutic efficacy . These challenges mainly arise because the interaction between nanoparticles and biological systems is complex and dynamic and is influenced by the physicochemical properties of the nanoparticles and the heterogeneity of biological systems. Importantly, once the nanoparticles are injected into the blood, a protein corona will inevitably form on the surface. The protein corona creates a new biological identity which plays a vital role in mediating the bio-nano interaction and determining the ultimate results. Thus, it is essential to understand how the protein corona affects the delivery journey of nanoparticles and what we can do to exploit the protein corona for better delivery efficiency. In this review, we first summarize the fundamental impact of the protein corona on the delivery journey of nanoparticles. Next, we emphasize the strategies that have been developed for tailoring and exploiting the protein corona to improve the transportation behavior of nanoparticles . Finally, we highlight what we need to do as a next step towards better understanding and exploitation of the protein corona. We hope these insights into the "Yin and Yang" effect of the protein corona will have profound implications for understanding the role of the protein corona in a wide range of nanoparticles.

摘要

基于纳米颗粒的药物递送系统在生物医学领域引起了广泛关注,因为它们能够以可控的方式将负载的药物输送到靶位点。然而,要实现预期的靶向性和治疗效果,仍必须克服巨大的挑战。这些挑战主要源于纳米颗粒与生物系统之间的相互作用复杂且动态,并且受到纳米颗粒的物理化学性质以及生物系统异质性的影响。重要的是,一旦纳米颗粒注入血液,其表面将不可避免地形成蛋白质冠层。蛋白质冠层赋予纳米颗粒新的生物学特性,这在介导生物-纳米相互作用以及决定最终结果方面起着至关重要的作用。因此,了解蛋白质冠层如何影响纳米颗粒的递送过程以及我们如何利用蛋白质冠层提高递送效率至关重要。在这篇综述中,我们首先总结蛋白质冠层对纳米颗粒递送过程的基本影响。接下来,我们重点介绍为定制和利用蛋白质冠层以改善纳米颗粒的转运行为而开发的策略。最后,我们强调作为进一步深入理解和利用蛋白质冠层的下一步需要做的事情。我们希望这些对蛋白质冠层“阴阳”效应的见解将对理解蛋白质冠层在广泛的纳米颗粒中的作用产生深远影响。

相似文献

1
The Yin and Yang of the protein corona on the delivery journey of nanoparticles.
Nano Res. 2023;16(1):715-734. doi: 10.1007/s12274-022-4849-6. Epub 2022 Sep 16.
2
Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection.
Acc Chem Res. 2021 Jan 19;54(2):291-301. doi: 10.1021/acs.accounts.0c00413. Epub 2020 Nov 12.
3
Engineering a Nano/Biointerface for Cell and Organ-Selective Drug Delivery.
Langmuir. 2022 Aug 2;38(30):9092-9098. doi: 10.1021/acs.langmuir.2c01609. Epub 2022 Jul 19.
4
Protein corona variation in nanoparticles revisited: A dynamic grouping strategy.
Colloids Surf B Biointerfaces. 2019 Jul 1;179:505-516. doi: 10.1016/j.colsurfb.2019.04.003. Epub 2019 Apr 3.
6
Gold nanoparticle should understand protein corona for being a clinical nanomaterial.
J Control Release. 2018 Feb 28;272:39-53. doi: 10.1016/j.jconrel.2018.01.002. Epub 2018 Jan 4.
7
The impact of protein corona on the behavior and targeting capability of nanoparticle-based delivery system.
Int J Pharm. 2018 Dec 1;552(1-2):328-339. doi: 10.1016/j.ijpharm.2018.10.011. Epub 2018 Oct 9.
8
Particle Targeting in Complex Biological Media.
Adv Healthc Mater. 2018 Jan;7(1). doi: 10.1002/adhm.201700575. Epub 2017 Aug 15.
9
Protein corona: challenges and opportunities for targeted delivery of nanomedicines.
Expert Opin Drug Deliv. 2022 Jul;19(7):833-846. doi: 10.1080/17425247.2022.2093854. Epub 2022 Jun 27.
10
Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines.
Front Bioeng Biotechnol. 2020 Dec 10;8:599454. doi: 10.3389/fbioe.2020.599454. eCollection 2020.

引用本文的文献

1
Crossing the blood-brain barrier: nanoparticle-based strategies for neurodegenerative disease therapy.
Drug Deliv Transl Res. 2025 Jun 14. doi: 10.1007/s13346-025-01887-9.
2
Nanofibers in Glioma Therapy: Advances, Applications, and Overcoming Challenges.
Int J Nanomedicine. 2025 Apr 14;20:4677-4703. doi: 10.2147/IJN.S510363. eCollection 2025.
3
Protein Corona of Nanoparticles: Isolation and Analysis.
Chem Bio Eng. 2024 Oct 3;1(9):757-772. doi: 10.1021/cbe.4c00105. eCollection 2024 Oct 24.
6
Possibilities and limitations of solution-state NMR spectroscopy to analyze the ligand shell of ultrasmall metal nanoparticles.
Nanoscale Adv. 2024 May 31;6(13):3285-3298. doi: 10.1039/d4na00139g. eCollection 2024 Jun 25.
7
Impact of protein coronas on nanoparticle interactions with tissues and targeted delivery.
Curr Opin Biotechnol. 2024 Feb;85:103046. doi: 10.1016/j.copbio.2023.103046. Epub 2023 Dec 16.
8
Aggregation-Induced Emission (AIE), Life and Health.
ACS Nano. 2023 Aug 8;17(15):14347-14405. doi: 10.1021/acsnano.3c03925. Epub 2023 Jul 24.
10
Peptide-Based Nanoparticles for Systemic Extrahepatic Delivery of Therapeutic Nucleotides.
Int J Mol Sci. 2023 May 29;24(11):9455. doi: 10.3390/ijms24119455.

本文引用的文献

1
Stimuli-responsive crosslinked nanomedicine for cancer treatment.
Exploration (Beijing). 2022 Apr 21;2(6):20210134. doi: 10.1002/EXP.20210134. eCollection 2022 Dec.
2
Advanced bioactive nanomaterials for biomedical applications.
Exploration (Beijing). 2021 Dec 28;1(3):20210089. doi: 10.1002/EXP.20210089. eCollection 2021 Dec.
3
Biomaterials and nanomedicine for bone regeneration: Progress and future prospects.
Exploration (Beijing). 2021 Oct 30;1(2):20210011. doi: 10.1002/EXP.20210011. eCollection 2021 Oct.
4
Aggregation Reduces Subcellular Localization and Cytotoxicity of Single-Walled Carbon Nanotubes.
ACS Appl Mater Interfaces. 2022 May 4;14(17):19168-19177. doi: 10.1021/acsami.2c02238. Epub 2022 Apr 19.
5
Protein corona-driven nanovaccines improve antigen intracellular release and immunotherapy efficacy.
J Control Release. 2022 May;345:601-609. doi: 10.1016/j.jconrel.2022.03.048. Epub 2022 Mar 25.
6
Passive targeting of high-grade gliomas the EPR effect: a closed path for metallic nanoparticles?
Biomater Sci. 2021 Nov 23;9(23):7984-7995. doi: 10.1039/d1bm01398j.
7
Transportation of AIE-visualized nanoliposomes is dominated by the protein corona.
Natl Sci Rev. 2021 Apr 24;8(6):nwab068. doi: 10.1093/nsr/nwab068. eCollection 2021 Jun.
8
Protein Corona Inhibits Endosomal Escape of Functionalized DNA Nanostructures in Living Cells.
ACS Appl Mater Interfaces. 2021 Oct 6;13(39):46375-46390. doi: 10.1021/acsami.1c14401. Epub 2021 Sep 27.
9
Magnetothermal regulation of in vivo protein corona formation on magnetic nanoparticles for improved cancer nanotherapy.
Biomaterials. 2021 Sep;276:121021. doi: 10.1016/j.biomaterials.2021.121021. Epub 2021 Jul 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验