Suppr超能文献

通过可解释人工智能从深度学习中获取遗传学见解。

Obtaining genetics insights from deep learning via explainable artificial intelligence.

作者信息

Novakovsky Gherman, Dexter Nick, Libbrecht Maxwell W, Wasserman Wyeth W, Mostafavi Sara

机构信息

Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.

Bioinformatics Graduate Program, University of British Columbia, Vancouver, British Columbia, Canada.

出版信息

Nat Rev Genet. 2023 Feb;24(2):125-137. doi: 10.1038/s41576-022-00532-2. Epub 2022 Oct 3.

Abstract

Artificial intelligence (AI) models based on deep learning now represent the state of the art for making functional predictions in genomics research. However, the underlying basis on which predictive models make such predictions is often unknown. For genomics researchers, this missing explanatory information would frequently be of greater value than the predictions themselves, as it can enable new insights into genetic processes. We review progress in the emerging area of explainable AI (xAI), a field with the potential to empower life science researchers to gain mechanistic insights into complex deep learning models. We discuss and categorize approaches for model interpretation, including an intuitive understanding of how each approach works and their underlying assumptions and limitations in the context of typical high-throughput biological datasets.

摘要

基于深度学习的人工智能(AI)模型如今代表了基因组学研究中进行功能预测的先进水平。然而,预测模型做出此类预测的潜在依据往往并不明确。对于基因组学研究人员而言,这种缺失的解释性信息通常比预测本身更具价值,因为它能够带来对遗传过程的新见解。我们回顾了可解释人工智能(xAI)这一新兴领域的进展,该领域有潜力使生命科学研究人员深入了解复杂的深度学习模型的机制。我们讨论并对模型解释方法进行了分类,包括对每种方法如何工作及其在典型高通量生物数据集背景下的潜在假设和局限性的直观理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验