Suppr超能文献

骨髓来源巨噬细胞联合骨髓间充质干细胞在双通道三维生物打印支架中用于大鼠颅骨缺损早期免疫调节和成骨诱导的应用

Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects.

作者信息

Yu Kaixuan, Huangfu Huimin, Qin Qiuyue, Zhang Yi, Gu Xinming, Liu Xinchan, Zhang Yidi, Zhou Yanmin

机构信息

Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun130021, China.

Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun130021, China.

出版信息

ACS Appl Mater Interfaces. 2022 Oct 19;14(41):47052-47065. doi: 10.1021/acsami.2c13557. Epub 2022 Oct 4.

Abstract

The host immune response to biomaterials is critical for determining scaffold fate and bone regeneration outcomes. Three-dimensional (3D) bioprinted scaffolds encapsulated with living cells can improve the inflammatory microenvironment and further accelerate bone repair. Here, we screened and adopted 8% methacrylamidated gelatin (GelMA)/1% methacrylamidated hyaluronic acid (HAMA) as the encapsulation system for rat bone marrow-derived macrophages (BMMs) and 3% Alginate/0.5 mg/mL graphene oxide (GO) as the encapsulation system for rat bone mesenchymal stem cells (BMSCs), thus forming a dual-channel bioprinting scaffold. The 8% GelMA/1% HAMA/3% Alginate/0.5 mg/mL GO (8/1/3/0.5) group could form a scaffold with a stable structure, good mechanical properties, and satisfied biocompatibility. When exploring the crosstalk between BMMs and BMSCs , we found that BMSCs could promote the polarization of BMMs to M2 type at the early stage, reduce the pro-inflammatory gene expression, and increase anti-inflammatory gene expression; conversely, BMMs can promote the osteogenic differentiation of BMSCs. In addition, in the model of rat calvarial defects, the dual-channel scaffold encapsulated with BMMs and BMSCs was more effective than the single-cell scaffold and the acellular scaffold. The paracrine of BMMs and BMSCs in the biodegradable dual-channel scaffold effectively promoted the M2-type polarization of macrophages in the microenvironment of early bone defects, avoided excessive inflammatory responses, and further promoted bone repair. In conclusion, our findings suggested that using 3D bioprinting to simultaneously encapsulate two primary cells of BMMs and BMSCs in a dual-channel system may be an effective way to promote bone repair from the perspective of early immune regulation and late induction of osteogenesis.

摘要

宿主对生物材料的免疫反应对于决定支架命运和骨再生结果至关重要。包裹活细胞的三维(3D)生物打印支架可以改善炎症微环境并进一步加速骨修复。在此,我们筛选并采用8%甲基丙烯酰胺化明胶(GelMA)/1%甲基丙烯酰胺化透明质酸(HAMA)作为大鼠骨髓来源巨噬细胞(BMMs)的封装系统,以及3%海藻酸钠/0.5 mg/mL氧化石墨烯(GO)作为大鼠骨髓间充质干细胞(BMSCs)的封装系统,从而形成一种双通道生物打印支架。8% GelMA/1% HAMA/3%海藻酸钠/0.5 mg/mL GO(8/1/3/0.5)组能够形成具有稳定结构、良好力学性能和满意生物相容性的支架。在探索BMMs与BMSCs之间的相互作用时,我们发现BMSCs在早期可促进BMMs向M2型极化,降低促炎基因表达,并增加抗炎基因表达;相反,BMMs可促进BMSCs的成骨分化。此外,在大鼠颅骨缺损模型中,包裹BMMs和BMSCs的双通道支架比单细胞支架和无细胞支架更有效。BMMs和BMSCs在可生物降解双通道支架中的旁分泌有效地促进了早期骨缺损微环境中巨噬细胞的M2型极化,避免了过度的炎症反应,并进一步促进了骨修复。总之,我们的研究结果表明,从早期免疫调节和晚期成骨诱导的角度来看,利用3D生物打印在双通道系统中同时封装BMMs和BMSCs这两种原代细胞可能是促进骨修复的一种有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验