Suppr超能文献

预测非吸烟电子烟使用者电子烟依赖的因素:用户行为和设备特征。

Predictors of electronic cigarette dependence among non-smoking electronic cigarette users: User behavior and device characteristics.

机构信息

Department of Psychology, West Virginia University, Morgantown, WV, United States.

Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.

出版信息

Addict Behav. 2023 Feb;137:107500. doi: 10.1016/j.addbeh.2022.107500. Epub 2022 Sep 23.

Abstract

INTRODUCTION

ECIGs differ in their ability to deliver nicotine to the user and, consequently, they may differ in their ability to produce dependence. This study examined individual device characteristics, device type, and user behaviors as predictors of ECIG dependence in a sample of never-smoking ECIG users.

METHODS

Participants (N = 134) completed an online survey that assessed demographics, ECIG use behavior, and ECIG dependence as measured via the Penn State Electronic Nicotine Dependence Index (PSECDI) and E-cigarette Dependence Scale (EDS-4). Participants uploaded a picture of their personal ECIG device/liquid, which was coded by raters to identify product features. Multivariable linear regressions examined device characteristics (e.g., adjustable power, nicotine concentration) and device type (e.g., vape pen, mod, pod, modern disposable) as predictors of dependence controlling for demographics and user behaviors (e.g., ECIG use duration and frequency, other tobacco use).

RESULTS

Longer durations of ECIG use and more use days/week were associated significantly with higher PSECDI (β's = 0.91 and 1.90, respectively; p's < 0.01) and EDS-4 scores (β's = 0.16 and 0.28, respectively; p's < 0.01). Higher nicotine concentrations were associated with higher PSECDI scores only (β = 0.07, p =.011). Dependence scores did not differ as a function of ECIG device types after controlling for covariates.

CONCLUSIONS

ECIG dependence was observed among the never-smoking ECIG users in this sample, regardless of their ECIG device/liquid features. Findings suggest that regulatory efforts aimed at reducing the dependence potential of ECIGs in never smokers should focus on overall nicotine emissions rather than product features.

摘要

简介

电子烟在向使用者输送尼古丁的能力方面存在差异,因此它们在产生依赖方面的能力也可能不同。本研究考察了个体设备特征、设备类型和使用者行为,以从未吸烟的电子烟使用者样本中预测电子烟依赖。

方法

参与者(N=134)完成了一项在线调查,该调查评估了人口统计学、电子烟使用行为以及通过宾夕法尼亚州立大学电子尼古丁依赖指数(PSECDI)和电子烟依赖量表(EDS-4)衡量的电子烟依赖。参与者上传了他们个人电子烟设备/液体的照片,这些照片由评分者进行编码,以识别产品特征。多变量线性回归分析考察了设备特征(例如,可调功率、尼古丁浓度)和设备类型(例如,电子烟笔、调制器、pod、现代一次性电子烟),以控制人口统计学和使用者行为(例如,电子烟使用时长和频率、其他烟草使用)来预测依赖。

结果

更长的电子烟使用时间和更多的使用天数/周与更高的 PSECDI(β's=0.91 和 1.90,分别;p's<0.01)和 EDS-4 评分(β's=0.16 和 0.28,分别;p's<0.01)显著相关。更高的尼古丁浓度仅与更高的 PSECDI 评分相关(β=0.07,p=0.011)。在控制了协变量后,依赖评分与电子烟设备类型无关。

结论

在本样本中,从未吸烟的电子烟使用者中观察到了电子烟依赖,无论他们的电子烟设备/液体特征如何。研究结果表明,旨在减少从未吸烟者电子烟依赖潜力的监管努力应侧重于整体尼古丁排放,而不是产品特征。

相似文献

3
Device features and user behaviors as predictors of dependence among never-smoking electronic cigarette users: PATH Wave 4.
Addict Behav. 2022 Feb;125:107161. doi: 10.1016/j.addbeh.2021.107161. Epub 2021 Oct 21.
5
Vaping Smoking: A Quest for Efficacy and Safety of E-cigarette.
Curr Drug Saf. 2018;13(2):92-101. doi: 10.2174/1574886313666180227110556.
6
Electronic Cigarette Device and Liquid Characteristics: Comparison of Self-Reports to User-Provided Pictures.
Subst Use Misuse. 2024;59(13):1990-1998. doi: 10.1080/10826084.2024.2392517. Epub 2024 Aug 19.
7
Psychometric properties of measures for electronic cigarette dependence among former-smoking electronic cigarette users.
Addict Behav. 2024 May;152:107974. doi: 10.1016/j.addbeh.2024.107974. Epub 2024 Jan 28.
8
"I cannot live without my vape": Electronic cigarette user-identified indicators of vaping dependence.
Drug Alcohol Depend. 2020 Apr 1;209:107886. doi: 10.1016/j.drugalcdep.2020.107886. Epub 2020 Feb 5.
10
Nicotine Dependence among Current Cigarette Smokers Who Use E-Cigarettes and Cannabis.
Subst Use Misuse. 2023;58(5):618-628. doi: 10.1080/10826084.2023.2177961. Epub 2023 Feb 27.

引用本文的文献

2
Electronic cigarette cue reactivity in exclusive electronic cigarette users.
Drug Alcohol Depend. 2025 Mar 1;268:112583. doi: 10.1016/j.drugalcdep.2025.112583. Epub 2025 Jan 30.
4
Disposable e-cigarette use: Factors, frequency and cigarette smoking among United States high school students.
Addiction. 2025 Mar;120(3):423-431. doi: 10.1111/add.16612. Epub 2024 Jul 9.

本文引用的文献

1
Nicotine Dependence from Different E-Cigarette Devices and Combustible Cigarettes among US Adolescent and Young Adult Users.
Int J Environ Res Public Health. 2022 May 11;19(10):5846. doi: 10.3390/ijerph19105846.
3
Tobacco Product Use Among Adults - United States, 2020.
MMWR Morb Mortal Wkly Rep. 2022 Mar 18;71(11):397-405. doi: 10.15585/mmwr.mm7111a1.
4
5
Device features and user behaviors as predictors of dependence among never-smoking electronic cigarette users: PATH Wave 4.
Addict Behav. 2022 Feb;125:107161. doi: 10.1016/j.addbeh.2021.107161. Epub 2021 Oct 21.
7
Variable Voltage, Tank-Style ENDS Do Not Always Deliver Nicotine.
Tob Regul Sci. 2020 Nov;6(6):416-422. doi: 10.18001/trs.6.6.5.
10
Electrical features, liquid composition and toxicant emissions from 'pod-mod'-like disposable electronic cigarettes.
Tob Control. 2022 Sep;31(5):667-670. doi: 10.1136/tobaccocontrol-2020-056362. Epub 2021 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验