Department of Psychology, West Virginia University, Morgantown, WV, United States.
Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
Addict Behav. 2023 Feb;137:107500. doi: 10.1016/j.addbeh.2022.107500. Epub 2022 Sep 23.
ECIGs differ in their ability to deliver nicotine to the user and, consequently, they may differ in their ability to produce dependence. This study examined individual device characteristics, device type, and user behaviors as predictors of ECIG dependence in a sample of never-smoking ECIG users.
Participants (N = 134) completed an online survey that assessed demographics, ECIG use behavior, and ECIG dependence as measured via the Penn State Electronic Nicotine Dependence Index (PSECDI) and E-cigarette Dependence Scale (EDS-4). Participants uploaded a picture of their personal ECIG device/liquid, which was coded by raters to identify product features. Multivariable linear regressions examined device characteristics (e.g., adjustable power, nicotine concentration) and device type (e.g., vape pen, mod, pod, modern disposable) as predictors of dependence controlling for demographics and user behaviors (e.g., ECIG use duration and frequency, other tobacco use).
Longer durations of ECIG use and more use days/week were associated significantly with higher PSECDI (β's = 0.91 and 1.90, respectively; p's < 0.01) and EDS-4 scores (β's = 0.16 and 0.28, respectively; p's < 0.01). Higher nicotine concentrations were associated with higher PSECDI scores only (β = 0.07, p =.011). Dependence scores did not differ as a function of ECIG device types after controlling for covariates.
ECIG dependence was observed among the never-smoking ECIG users in this sample, regardless of their ECIG device/liquid features. Findings suggest that regulatory efforts aimed at reducing the dependence potential of ECIGs in never smokers should focus on overall nicotine emissions rather than product features.
电子烟在向使用者输送尼古丁的能力方面存在差异,因此它们在产生依赖方面的能力也可能不同。本研究考察了个体设备特征、设备类型和使用者行为,以从未吸烟的电子烟使用者样本中预测电子烟依赖。
参与者(N=134)完成了一项在线调查,该调查评估了人口统计学、电子烟使用行为以及通过宾夕法尼亚州立大学电子尼古丁依赖指数(PSECDI)和电子烟依赖量表(EDS-4)衡量的电子烟依赖。参与者上传了他们个人电子烟设备/液体的照片,这些照片由评分者进行编码,以识别产品特征。多变量线性回归分析考察了设备特征(例如,可调功率、尼古丁浓度)和设备类型(例如,电子烟笔、调制器、pod、现代一次性电子烟),以控制人口统计学和使用者行为(例如,电子烟使用时长和频率、其他烟草使用)来预测依赖。
更长的电子烟使用时间和更多的使用天数/周与更高的 PSECDI(β's=0.91 和 1.90,分别;p's<0.01)和 EDS-4 评分(β's=0.16 和 0.28,分别;p's<0.01)显著相关。更高的尼古丁浓度仅与更高的 PSECDI 评分相关(β=0.07,p=0.011)。在控制了协变量后,依赖评分与电子烟设备类型无关。
在本样本中,从未吸烟的电子烟使用者中观察到了电子烟依赖,无论他们的电子烟设备/液体特征如何。研究结果表明,旨在减少从未吸烟者电子烟依赖潜力的监管努力应侧重于整体尼古丁排放,而不是产品特征。