Kartha Vinay K, Duarte Fabiana M, Hu Yan, Ma Sai, Chew Jennifer G, Lareau Caleb A, Earl Andrew, Burkett Zach D, Kohlway Andrew S, Lebofsky Ronald, Buenrostro Jason D
Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
Cell Genom. 2022 Sep 14;2(9). doi: 10.1016/j.xgen.2022.100166. Epub 2022 Aug 4.
Cells require coordinated control over gene expression when responding to environmental stimuli. Here we apply scATAC-seq and single-cell RNA sequencing (scRNA-seq) in resting and stimulated human blood cells. Collectively, we generate ~91,000 single-cell profiles, allowing us to probe the cis-regulatory landscape of the immunological response across cell types, stimuli, and time. Advancing tools to integrate multi-omics data, we develop functional inference of gene regulation (FigR), a framework to computationally pair scA-TAC-seq with scRNA-seq cells, connect distal cis-regulatory elements to genes, and infer gene-regulatory networks (GRNs) to identify candidate transcription factor (TF) regulators. Utilizing these paired multi-omics data, we define domains of regulatory chromatin (DORCs) of immune stimulation and find that cells alter chromatin accessibility and gene expression at timescales of minutes. Construction of the stimulation GRN elucidates TF activity at disease-associated DORCs. Overall, FigR enables elucidation of regulatory interactions across single-cell data, providing new opportunities to understand the function of cells within tissues.
细胞在应对环境刺激时需要对基因表达进行协调控制。在这里,我们对静息和受刺激的人类血细胞应用了单细胞染色质转座酶可及性测序(scATAC-seq)和单细胞RNA测序(scRNA-seq)。我们总共生成了约91,000个单细胞图谱,这使我们能够探究跨细胞类型、刺激因素和时间的免疫反应的顺式调控景观。在推进整合多组学数据的工具方面,我们开发了基因调控功能推断(FigR),这是一个将scA-TAC-seq与scRNA-seq细胞进行计算配对、将远端顺式调控元件与基因连接起来并推断基因调控网络(GRN)以识别候选转录因子(TF)调控因子的框架。利用这些配对的多组学数据,我们定义了免疫刺激的调控染色质结构域(DORC),并发现细胞在数分钟的时间尺度上改变染色质可及性和基因表达。刺激GRN的构建阐明了疾病相关DORC处的TF活性。总体而言,FigR能够阐明单细胞数据中的调控相互作用,为理解组织内细胞的功能提供了新的机会。