Suppr超能文献

外周免疫细胞的单细胞表观基因组景观揭示了 COVID-19 康复个体中训练免疫的建立。

Single-cell epigenomic landscape of peripheral immune cells reveals establishment of trained immunity in individuals convalescing from COVID-19.

机构信息

Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China.

Chongqing International Institute for Immunology, Chongqing, China.

出版信息

Nat Cell Biol. 2021 Jun;23(6):620-630. doi: 10.1038/s41556-021-00690-1. Epub 2021 Jun 9.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection often causes severe complications and even death. However, asymptomatic infection has also been reported, highlighting the difference in immune responses among individuals. Here we performed single-cell chromatin accessibility and T cell-receptor analyses of peripheral blood mononuclear cells collected from individuals convalescing from COVID-19 and healthy donors. Chromatin remodelling was observed in both innate and adaptive immune cells in the individuals convalescing from COVID-19. Compared with healthy donors, recovered individuals contained abundant TBET-enriched CD16 and IRF1-enriched CD14 monocytes with sequential trained and activated epigenomic states. The B-cell lineage in recovered individuals exhibited an accelerated developmental programme from immature B cells to antibody-producing plasma cells. Finally, an integrated analysis of single-cell T cell-receptor clonality with the chromatin accessibility landscape revealed the expansion of putative SARS-CoV-2-specific CD8 T cells with epigenomic profiles that promote the differentiation of effector or memory cells. Overall, our data suggest that immune cells of individuals convalescing from COVID-19 exhibit global remodelling of the chromatin accessibility landscape, indicative of the establishment of immunological memory.

摘要

严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)感染常导致严重并发症,甚至死亡。然而,也有报道称无症状感染,这突出了个体之间免疫反应的差异。在这里,我们对从 COVID-19 中康复的个体和健康供体采集的外周血单核细胞进行了单细胞染色质可及性和 T 细胞受体分析。COVID-19 康复个体的固有和适应性免疫细胞中均观察到染色质重塑。与健康供体相比,康复个体含有丰富的 TBET 富集的 CD16 和 IRF1 富集的 CD14 单核细胞,具有连续的训练和激活的表观基因组状态。康复个体的 B 细胞谱系表现出从未成熟 B 细胞到产生抗体的浆细胞的加速发育程序。最后,单细胞 T 细胞受体克隆性与染色质可及性图谱的综合分析揭示了具有促进效应或记忆细胞分化的表观基因组特征的潜在 SARS-CoV-2 特异性 CD8 T 细胞的扩增。总体而言,我们的数据表明,从 COVID-19 中康复的个体的免疫细胞表现出染色质可及性景观的全面重塑,表明免疫记忆的建立。

相似文献

2
Immune Memory in Mild COVID-19 Patients and Unexposed Donors Reveals Persistent T Cell Responses After SARS-CoV-2 Infection.
Front Immunol. 2021 Mar 11;12:636768. doi: 10.3389/fimmu.2021.636768. eCollection 2021.
3
Transcriptional Changes in CD16+ Monocytes May Contribute to the Pathogenesis of COVID-19.
Front Immunol. 2021 May 24;12:665773. doi: 10.3389/fimmu.2021.665773. eCollection 2021.
7
Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients.
Front Immunol. 2021 Feb 24;12:625881. doi: 10.3389/fimmu.2021.625881. eCollection 2021.
10
Critical COVID-19 is associated with distinct leukocyte phenotypes and transcriptome patterns.
J Intern Med. 2021 Sep;290(3):677-692. doi: 10.1111/joim.13310. Epub 2021 Jun 3.

引用本文的文献

1
Maladaptive trained immunity in viral infections.
J Clin Invest. 2025 Sep 2;135(17). doi: 10.1172/JCI192469.
2
The Application of Single-Cell Technologies for Vaccine Development Against Viral Infections.
Vaccines (Basel). 2025 Jun 26;13(7):687. doi: 10.3390/vaccines13070687.
4
Epigenomic landscapes define differential Janus kinases inhibitor sensitivity in IFN-γ-primed human macrophages.
iScience. 2025 Apr 22;28(5):112502. doi: 10.1016/j.isci.2025.112502. eCollection 2025 May 16.
5
Advocating the role of trained immunity in the pathogenesis of ME/CFS: a mini review.
Front Immunol. 2025 Mar 25;16:1483764. doi: 10.3389/fimmu.2025.1483764. eCollection 2025.
9
Impact of COVID-19 infection on Kawasaki disease and immune status in children.
Sci Rep. 2025 Feb 21;15(1):6417. doi: 10.1038/s41598-025-91042-8.
10
Role of Trained Immunity in Heath and Disease.
Curr Cardiol Rep. 2025 Jan 13;27(1):18. doi: 10.1007/s11886-024-02167-7.

本文引用的文献

1
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
Nat Genet. 2021 Mar;53(3):403-411. doi: 10.1038/s41588-021-00790-6. Epub 2021 Feb 25.
2
Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques.
Science. 2020 Aug 14;369(6505):818-823. doi: 10.1126/science.abc5343. Epub 2020 Jul 2.
3
An Erg-driven transcriptional program controls B cell lymphopoiesis.
Nat Commun. 2020 Jun 15;11(1):3013. doi: 10.1038/s41467-020-16828-y.
4
A single-cell atlas of the peripheral immune response in patients with severe COVID-19.
Nat Med. 2020 Jul;26(7):1070-1076. doi: 10.1038/s41591-020-0944-y. Epub 2020 Jun 8.
5
Immunology of COVID-19: Current State of the Science.
Immunity. 2020 Jun 16;52(6):910-941. doi: 10.1016/j.immuni.2020.05.002. Epub 2020 May 6.
6
Trained Immunity: a Tool for Reducing Susceptibility to and the Severity of SARS-CoV-2 Infection.
Cell. 2020 May 28;181(5):969-977. doi: 10.1016/j.cell.2020.04.042. Epub 2020 May 4.
7
Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19).
Front Immunol. 2020 May 1;11:827. doi: 10.3389/fimmu.2020.00827. eCollection 2020.
8
Heightened Innate Immune Responses in the Respiratory Tract of COVID-19 Patients.
Cell Host Microbe. 2020 Jun 10;27(6):883-890.e2. doi: 10.1016/j.chom.2020.04.017. Epub 2020 May 4.
9
Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19.
Nat Med. 2020 Jun;26(6):842-844. doi: 10.1038/s41591-020-0901-9. Epub 2020 May 12.
10
Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing.
Cell Discov. 2020 May 4;6:31. doi: 10.1038/s41421-020-0168-9. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验