Suppr超能文献

黏合蛋白和 CTCF 复合物根据核小体位置介导染色质环上的接触。

Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.

机构信息

Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.

Competence Center Bioinformatics, Institute for Applied Computer Science, Hochschule Stralsund, Stralsund, Germany.

出版信息

Biophys J. 2022 Dec 20;121(24):4788-4799. doi: 10.1016/j.bpj.2022.10.044. Epub 2022 Nov 2.

Abstract

The spatial organization of the eukaryotic genome plays an important role in regulating transcriptional activity. In the nucleus, chromatin forms loops that assemble into fundamental units called topologically associating domains that facilitate or inhibit long-range contacts. These loops are formed and held together by the ring-shaped cohesin protein complex, and this can involve binding of CCCTC-binding factor (CTCF). High-resolution conformation capture experiments provide the frequency at which two DNA fragments physically associate in three-dimensional space. However, technical limitations of this approach, such as low throughput, low resolution, or noise in contact maps, make data interpretation and identification of chromatin intraloop contacts, e.g., between distal regulatory elements and their target genes, challenging. Herein, an existing coarse-grained model of chromatin at single-nucleosome resolution was extended by integrating potentials describing CTCF and cohesin. We performed replica-exchange Monte Carlo simulations with regularly spaced nucleosomes and experimentally determined nucleosome positions in the presence of cohesin-CTCF, as well as depleted systems as controls. In fully extruded loops caused by the presence of cohesin and CTCF, the number of contacts within the formed loops was increased. The number and types of these contacts were impacted by the nucleosome distribution and loop size. Microloops were observed within cohesin-mediated loops due to thermal fluctuations without additional influence of other factors, and the number, size, and shape of microloops were determined by nucleosome distribution and loop size. Nucleosome positions directly affect the spatial structure and contact probability within a loop, with presumed consequences for transcriptional activity.

摘要

真核生物基因组的空间组织在调节转录活性方面起着重要作用。在核内,染色质形成环,这些环组装成基本单元,称为拓扑关联域,促进或抑制长距离接触。这些环是由环形黏合蛋白复合物形成并保持在一起的,这可能涉及结合 CCCTC 结合因子(CTCF)。高分辨率构象捕获实验提供了两个 DNA 片段在三维空间中物理关联的频率。然而,这种方法的技术限制,如低通量、低分辨率或接触图谱中的噪声,使得数据解释和鉴定染色质内loop 接触变得具有挑战性,例如,在远端调控元件与其靶基因之间。在此,通过整合描述 CTCF 和黏合蛋白的势,扩展了单个核小体分辨率下的染色质现有粗粒度模型。我们在存在黏合蛋白-CTCF 以及耗尽系统作为对照的情况下,对规则间隔核小体进行 replica-exchange Monte Carlo 模拟,并进行了实验确定核小体位置。在存在黏合蛋白和 CTCF 引起的完全挤出环中,形成环内的接触数量增加。这些接触的数量和类型受到核小体分布和环大小的影响。由于热波动,在黏合蛋白介导的环内观察到微环,而没有其他因素的额外影响,微环的数量、大小和形状由核小体分布和环大小决定。核小体位置直接影响环内的空间结构和接触概率,可能对转录活性产生影响。

相似文献

1
Cohesin and CTCF complexes mediate contacts in chromatin loops depending on nucleosome positions.
Biophys J. 2022 Dec 20;121(24):4788-4799. doi: 10.1016/j.bpj.2022.10.044. Epub 2022 Nov 2.
3
Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
EMBO J. 2017 Dec 15;36(24):3573-3599. doi: 10.15252/embj.201798004. Epub 2017 Dec 7.
7
CTCF is a DNA-tension-dependent barrier to cohesin-mediated loop extrusion.
Nature. 2023 Apr;616(7958):822-827. doi: 10.1038/s41586-023-05961-5. Epub 2023 Apr 19.
8
CTCF and cohesin regulate chromatin loop stability with distinct dynamics.
Elife. 2017 May 3;6:e25776. doi: 10.7554/eLife.25776.
9
Cohesin and CTCF do not assemble TADs in sperm and male pronuclei.
Genome Res. 2023 Dec 27;33(12):2094-2107. doi: 10.1101/gr.277865.123.
10
Gain of CTCF-Anchored Chromatin Loops Marks the Exit from Naive Pluripotency.
Cell Syst. 2018 Nov 28;7(5):482-495.e10. doi: 10.1016/j.cels.2018.09.003. Epub 2018 Nov 7.

引用本文的文献

1
Nucleosome placement and polymer mechanics explain genomic contacts on 100 kb scales.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf670.
3
Nucleosome placement and polymer mechanics explain genomic contacts on 100kbp scales.
bioRxiv. 2024 Sep 24:2024.09.24.614727. doi: 10.1101/2024.09.24.614727.
4
Nucleosome spacing controls chromatin spatial structure and accessibility.
Biophys J. 2024 Apr 2;123(7):847-857. doi: 10.1016/j.bpj.2024.02.024. Epub 2024 Feb 27.
5
An associative memory Hamiltonian model for DNA and nucleosomes.
PLoS Comput Biol. 2023 Mar 27;19(3):e1011013. doi: 10.1371/journal.pcbi.1011013. eCollection 2023 Mar.
6
Innovations in biophysics: A sampling of ideas celebrating Ned Seeman's legacy.
Biophys J. 2022 Dec 20;121(24):E1-E2. doi: 10.1016/j.bpj.2022.11.030. Epub 2022 Dec 9.

本文引用的文献

1
Nested epistasis enhancer networks for robust genome regulation.
Science. 2022 Sep 2;377(6610):1077-1085. doi: 10.1126/science.abk3512. Epub 2022 Aug 11.
3
Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication.
J Biol Chem. 2022 Aug;298(8):102117. doi: 10.1016/j.jbc.2022.102117. Epub 2022 Jun 9.
5
Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging.
Science. 2022 Apr 29;376(6592):496-501. doi: 10.1126/science.abn6583. Epub 2022 Apr 14.
6
Identification of chromatin loops from Hi-C interaction matrices by CTCF-CTCF topology classification.
NAR Genom Bioinform. 2022 Mar 8;4(1):lqac021. doi: 10.1093/nargab/lqac021. eCollection 2022 Mar.
7
Differences in nanoscale organization of regulatory active and inactive human chromatin.
Biophys J. 2022 Mar 15;121(6):977-990. doi: 10.1016/j.bpj.2022.02.009. Epub 2022 Feb 10.
8
Full circle: a brief history of cohesin and the regulation of gene expression.
FEBS J. 2023 Apr;290(7):1670-1687. doi: 10.1111/febs.16362. Epub 2022 Jan 31.
9
Computational modeling of chromatin accessibility identified important epigenomic regulators.
BMC Genomics. 2022 Jan 8;23(1):19. doi: 10.1186/s12864-021-08234-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验