Suppr超能文献

肺泡上皮细胞和微环境硬度在三维水凝胶肺模型中协同驱动成纤维细胞的激活。

Alveolar epithelial cells and microenvironmental stiffness synergistically drive fibroblast activation in three-dimensional hydrogel lung models.

机构信息

Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, USA.

Program in Cell Biology, Department of Pediatrics, National Jewish Health, USA.

出版信息

Biomater Sci. 2022 Dec 6;10(24):7133-7148. doi: 10.1039/d2bm00827k.

Abstract

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease that progressively and irreversibly alters the lung parenchyma, eventually leading to respiratory failure. The study of this disease has been historically challenging due to the myriad of complex processes that contribute to fibrogenesis and the inherent difficulty in accurately recreating the human pulmonary environment . Here, we describe a poly(ethylene glycol) PEG hydrogel-based three-dimensional model for the co-culture of primary murine pulmonary fibroblasts and alveolar epithelial cells that reproduces the micro-architecture, cell placement, and mechanical properties of healthy and fibrotic lung tissue. Co-cultured cells retained normal levels of viability up to at least three weeks and displayed differentiation patterns observed during IPF progression. Interrogation of protein and gene expression within this model showed that myofibroblast activation required both extracellular mechanical cues and the presence of alveolar epithelial cells. Differences in gene expression indicated that cellular co-culture induced TGF-β signaling and proliferative gene expression, while microenvironmental stiffness upregulated the expression of genes related to cell-ECM interactions. This biomaterial-based cell culture system serves as a significant step forward in the accurate recapitulation of human lung tissue and highlights the need to incorporate multiple factors that work together synergistically into models of lung biology of health and disease.

摘要

特发性肺纤维化(IPF)是一种破坏性肺部疾病,它会逐渐且不可逆转地改变肺部实质,最终导致呼吸衰竭。由于导致纤维化的复杂过程众多,以及准确重现人类肺部环境的固有困难,对这种疾病的研究一直具有挑战性。在这里,我们描述了一种基于聚乙二醇(PEG)水凝胶的三维共培养模型,用于原代鼠肺成纤维细胞和肺泡上皮细胞的共培养,该模型再现了健康和纤维化肺组织的微观结构、细胞位置和机械特性。共培养细胞的存活率至少维持在三周以上,并显示出在 IPF 进展过程中观察到的分化模式。对该模型中的蛋白质和基因表达的检测表明,肌成纤维细胞的激活需要细胞外机械线索和肺泡上皮细胞的存在。基因表达的差异表明,细胞共培养诱导了 TGF-β信号和增殖基因的表达,而微环境硬度上调了与细胞-ECM 相互作用相关基因的表达。这种基于生物材料的细胞培养系统是在准确再现人类肺部组织方面向前迈出的重要一步,强调了需要将协同作用的多个因素纳入健康和疾病肺部生物学模型中。

相似文献

2
Collagen 3D matrices as a model for the study of cell behavior in pulmonary fibrosis.
Exp Lung Res. 2022 Apr;48(3):126-136. doi: 10.1080/01902148.2022.2067265. Epub 2022 May 20.
3
Three dimensional fibrotic extracellular matrix directs microenvironment fiber remodeling by fibroblasts.
Acta Biomater. 2024 Mar 15;177:118-131. doi: 10.1016/j.actbio.2024.02.008. Epub 2024 Feb 11.
4
Epithelial-mesenchymal crosstalk influences cellular behavior in a 3D alveolus-fibroblast model system.
Biomaterials. 2018 Feb;155:124-134. doi: 10.1016/j.biomaterials.2017.11.008. Epub 2017 Nov 15.
5
Increased AGE-RAGE ratio in idiopathic pulmonary fibrosis.
Respir Res. 2016 Nov 5;17(1):144. doi: 10.1186/s12931-016-0460-2.
6
YY1 mediates TGF-β1-induced EMT and pro-fibrogenesis in alveolar epithelial cells.
Respir Res. 2019 Nov 8;20(1):249. doi: 10.1186/s12931-019-1223-7.
7
Alveolar macrophages drive lung fibroblast function in cocultures of IPF and normal patient samples.
Am J Physiol Lung Cell Mol Physiol. 2023 Apr 1;324(4):L507-L520. doi: 10.1152/ajplung.00263.2022. Epub 2023 Feb 15.
9
Dicer1 Deficiency in the Idiopathic Pulmonary Fibrosis Fibroblastic Focus Promotes Fibrosis by Suppressing MicroRNA Biogenesis.
Am J Respir Crit Care Med. 2018 Aug 15;198(4):486-496. doi: 10.1164/rccm.201709-1823OC.

引用本文的文献

2
Female Fibroblast Activation Is Estrogen-Mediated in Sex-Specific 3D-Bioprinted Pulmonary Artery Adventitia Models.
ACS Biomater Sci Eng. 2025 May 12;11(5):2935-2945. doi: 10.1021/acsbiomaterials.5c00123. Epub 2025 Apr 26.
3
Tissue-Informed Biomaterial Innovations Advance Pulmonary Regenerative Engineering.
ACS Macro Lett. 2025 Apr 15;14(4):434-447. doi: 10.1021/acsmacrolett.5c00075. Epub 2025 Mar 18.
4
Biomaterial-based 3D human lung models replicate pathological characteristics of early pulmonary fibrosis.
bioRxiv. 2025 Feb 17:2025.02.12.637970. doi: 10.1101/2025.02.12.637970.
5
6
Engineered hydrogel biomaterials facilitate lung progenitor cell differentiation from induced pluripotent stem cells.
Am J Physiol Lung Cell Mol Physiol. 2025 Mar 1;328(3):L379-L388. doi: 10.1152/ajplung.00419.2024. Epub 2025 Jan 30.
7
Mechanomemory of pulmonary fibroblasts demonstrates reversibility of transcriptomics and contraction phenotypes.
Biomaterials. 2025 Mar;314:122830. doi: 10.1016/j.biomaterials.2024.122830. Epub 2024 Sep 10.
8
Binary fabrication of decellularized lung extracellular matrix hybridgels for in vitro chronic obstructive pulmonary disease modeling.
Acta Biomater. 2024 Sep 1;185:190-202. doi: 10.1016/j.actbio.2024.07.014. Epub 2024 Jul 24.
9
Dynamic reporters for probing real-time activation of human fibroblasts from single cells to populations.
APL Bioeng. 2024 Jun 24;8(2):026127. doi: 10.1063/5.0166152. eCollection 2024 Jun.
10
The evolution of models of lung fibrosis: promising prospects for drug discovery.
Eur Respir Rev. 2024 Jan 17;33(171). doi: 10.1183/16000617.0127-2023. Print 2024 Jan 31.

本文引用的文献

3
Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids.
Stem Cell Reports. 2021 Dec 14;16(12):2973-2987. doi: 10.1016/j.stemcr.2021.10.015. Epub 2021 Nov 18.
4
Pulmonary fibrosis distal airway epithelia are dynamically and structurally dysfunctional.
Nat Commun. 2021 Jul 27;12(1):4566. doi: 10.1038/s41467-021-24853-8.
5
Particle Hydrogels Based on Hyaluronic Acid Building Blocks.
ACS Biomater Sci Eng. 2016 Nov 14;2(11):2034-2041. doi: 10.1021/acsbiomaterials.6b00444. Epub 2016 Sep 27.
8
Persistence of a regeneration-associated, transitional alveolar epithelial cell state in pulmonary fibrosis.
Nat Cell Biol. 2020 Aug;22(8):934-946. doi: 10.1038/s41556-020-0542-8. Epub 2020 Jul 13.
10
Human lung extracellular matrix hydrogels resemble the stiffness and viscoelasticity of native lung tissue.
Am J Physiol Lung Cell Mol Physiol. 2020 Apr 1;318(4):L698-L704. doi: 10.1152/ajplung.00451.2019. Epub 2020 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验