Suppr超能文献

通过急性心肌梗死后甚至之前靶向递供氧释放纳米颗粒来拯救心脏细胞和改善心脏功能。

Rescuing Cardiac Cells and Improving Cardiac Function by Targeted Delivery of Oxygen-Releasing Nanoparticles after or Even before Acute Myocardial Infarction.

机构信息

Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States.

出版信息

ACS Nano. 2022 Nov 22;16(11):19551-19566. doi: 10.1021/acsnano.2c10043. Epub 2022 Nov 11.

Abstract

Myocardial infarction (MI) causes massive cell death due to restricted blood flow and oxygen deficiency. Rapid and sustained oxygen delivery following MI rescues cardiac cells and restores cardiac function. However, current oxygen-generating materials cannot be administered during acute MI stage without direct injection or suturing methods, both of which risk rupturing weakened heart tissue. Here, we present infarcted heart-targeting, oxygen-releasing nanoparticles capable of being delivered by intravenous injection at acute MI stage, and specifically accumulating in the infarcted heart. The nanoparticles can also be delivered before MI, then gather at the injured area after MI. We demonstrate that the nanoparticles, delivered either pre-MI or post-MI, enhance cardiac cell survival, stimulate angiogenesis, and suppress fibrosis without inducing substantial inflammation and reactive oxygen species overproduction. Our findings demonstrate that oxygen-delivering nanoparticles can provide a nonpharmacological solution to rescue the infarcted heart during acute MI and preserve heart function.

摘要

心肌梗死 (MI) 会因血流受限和缺氧而导致大量细胞死亡。MI 后快速持续供氧可挽救心脏细胞并恢复心脏功能。然而,目前的供氧材料在没有直接注射或缝合方法的情况下不能在急性 MI 阶段使用,这两种方法都有破裂脆弱心肌组织的风险。在这里,我们提出了针对心肌梗死的、能够通过静脉注射在急性 MI 阶段给药的、并能特异性地在梗死心脏中积累的释氧纳米颗粒。这些纳米颗粒也可以在 MI 之前给药,然后在 MI 后聚集在损伤区域。我们证明,无论是在 MI 前还是 MI 后给药,这些纳米颗粒都能提高心脏细胞的存活率、刺激血管生成,并抑制纤维化,而不会引起大量炎症和活性氧过度产生。我们的研究结果表明,供氧纳米颗粒可为急性 MI 期间挽救梗死心脏和保护心脏功能提供一种非药物解决方案。

相似文献

3
4
Reactive oxygen species promote angiogenesis in the infarcted rat heart.
Int J Exp Pathol. 2009 Dec;90(6):621-9. doi: 10.1111/j.1365-2613.2009.00682.x. Epub 2009 Sep 15.
5
Nanoparticles targeting the infarcted heart.
Nano Lett. 2011 Oct 12;11(10):4411-4. doi: 10.1021/nl2025882. Epub 2011 Sep 14.
8
Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats.
Int J Nanomedicine. 2017 May 17;12:3767-3784. doi: 10.2147/IJN.S129324. eCollection 2017.
10
5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation.
J Mol Cell Cardiol. 2021 Sep;158:101-114. doi: 10.1016/j.yjmcc.2021.05.014. Epub 2021 Jun 1.

引用本文的文献

1
Advancements in nanomedicine for modulating ischemic cardiomyopathy therapy.
Mater Today Bio. 2025 Aug 23;34:102238. doi: 10.1016/j.mtbio.2025.102238. eCollection 2025 Oct.
2
Advanced Nanomaterial Platforms for Targeted Therapy of Myocardial Ischemia-Reperfusion Injury.
Research (Wash D C). 2025 Aug 5;8:0822. doi: 10.34133/research.0822. eCollection 2025.
3
Nanoparticles For Rescue: Innovative Therapeutic Strategy For Cardiac Repair After Myocardial Infarction.
J Cardiovasc Transl Res. 2025 Jul 18. doi: 10.1007/s12265-025-10660-9.
4
Targeted delivery of engineered adipose-derived stem cell secretome to promote cardiac repair after myocardial infarction.
J Control Release. 2025 Jul 10;383:113765. doi: 10.1016/j.jconrel.2025.113765. Epub 2025 Apr 22.
5
Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair.
Int J Mol Sci. 2025 Mar 27;26(7):3063. doi: 10.3390/ijms26073063.
8
Inflammatory Cell-Targeted Delivery Systems for Myocardial Infarction Treatment.
Bioengineering (Basel). 2025 Feb 19;12(2):205. doi: 10.3390/bioengineering12020205.
9
Nanomaterials: Promising Tools for the Diagnosis and Treatment of Myocardial Infarction.
Int J Nanomedicine. 2025 Feb 11;20:1747-1768. doi: 10.2147/IJN.S500146. eCollection 2025.

本文引用的文献

2
Cellular Crosstalk between Endothelial and Smooth Muscle Cells in Vascular Wall Remodeling.
Int J Mol Sci. 2021 Jul 6;22(14):7284. doi: 10.3390/ijms22147284.
5
Targeted nanoscale therapeutics for myocardial infarction.
Biomater Sci. 2021 Feb 21;9(4):1204-1216. doi: 10.1039/d0bm01677b. Epub 2020 Dec 23.
6
Angiogenesis after acute myocardial infarction.
Cardiovasc Res. 2021 Apr 23;117(5):1257-1273. doi: 10.1093/cvr/cvaa287.
7
Photoluminescent oxygen-release microspheres to image the oxygen release process in vivo.
Acta Biomater. 2020 Oct 1;115:333-342. doi: 10.1016/j.actbio.2020.08.031. Epub 2020 Aug 25.
8
3D Bioprinting of Oxygenated Cell-Laden Gelatin Methacryloyl Constructs.
Adv Healthc Mater. 2020 Aug;9(15):e1901794. doi: 10.1002/adhm.201901794. Epub 2020 Jun 16.
9
High oxygen preservation hydrogels to augment cell survival under hypoxic condition.
Acta Biomater. 2020 Mar 15;105:56-67. doi: 10.1016/j.actbio.2020.01.017. Epub 2020 Jan 15.
10
The Role of the TGF-β Superfamily in Myocardial Infarction.
Front Cardiovasc Med. 2019 Sep 18;6:140. doi: 10.3389/fcvm.2019.00140. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验