Suppr超能文献

定义干扰素-α刺激的人类基因特征:来自表达数据和机器学习的见解。

Defining the characteristics of interferon-alpha-stimulated human genes: insight from expression data and machine learning.

机构信息

MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, Campus, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.

出版信息

Gigascience. 2022 Nov 18;11. doi: 10.1093/gigascience/giac103.

Abstract

BACKGROUND

A virus-infected cell triggers a signalling cascade, resulting in the secretion of interferons (IFNs), which in turn induces the upregulation of the IFN-stimulated genes (ISGs) that play a role in antipathogen host defence. Here, we conducted analyses on large-scale data relating to evolutionary gene expression, sequence composition, and network properties to elucidate factors associated with the stimulation of human genes in response to IFN-α.

RESULTS

We find that ISGs are less evolutionary conserved than genes that are not significantly stimulated in IFN experiments (non-ISGs). ISGs show obvious depletion of GC content in the coding region. This influences the representation of some compositions following the translation process. IFN-repressed human genes (IRGs), downregulated genes in IFN experiments, can have similar properties to the ISGs. Additionally, we design a machine learning framework integrating the support vector machine and novel feature selection algorithm that achieves an area under the receiver operating characteristic curve (AUC) of 0.7455 for ISG prediction. Its application in other IFN systems suggests the similarity between the ISGs triggered by type I and III IFNs.

CONCLUSIONS

ISGs have some unique properties that make them different from the non-ISGs. The representation of some properties has a strong correlation with gene expression following IFN-α stimulation, which can be used as a predictive feature in machine learning. Our model predicts several genes as putative ISGs that so far have shown no significant differential expression when stimulated with IFN-α in the cell/tissue types in the available databases. A web server implementing our method is accessible at http://isgpre.cvr.gla.ac.uk/. The docker image at https://hub.docker.com/r/hchai01/isgpre can be downloaded to reproduce the prediction.

摘要

背景

病毒感染的细胞会引发信号级联反应,导致干扰素(IFNs)的分泌,进而诱导干扰素刺激基因(ISGs)的上调,这些基因在抗病原体宿主防御中发挥作用。在这里,我们对与进化基因表达、序列组成和网络特性相关的大规模数据进行了分析,以阐明与 IFN-α 刺激人类基因相关的因素。

结果

我们发现 ISGs 的进化保守性低于 IFN 实验中未被显著刺激的基因(非-ISGs)。ISGs 在编码区明显缺乏 GC 含量。这会影响翻译过程后的一些成分的表示。IFN 抑制的人类基因(IRGs),即 IFN 实验中下调的基因,可能具有与 ISGs 相似的特性。此外,我们设计了一个机器学习框架,该框架集成了支持向量机和新的特征选择算法,用于 ISG 预测的接收器操作特征曲线(ROC)下面积(AUC)为 0.7455。其在其他 IFN 系统中的应用表明,I 型和 III 型 IFN 触发的 ISGs 具有相似性。

结论

ISGs 具有一些独特的特性,使其与非-ISGs 不同。一些特性的表示与 IFN-α 刺激后的基因表达有很强的相关性,可作为机器学习中的预测特征。我们的模型预测了一些基因作为潜在的 ISGs,这些基因迄今为止在可用数据库中用 IFN-α 刺激细胞/组织类型时没有表现出明显的差异表达。实现我们方法的 Web 服务器可在 http://isgpre.cvr.gla.ac.uk/ 访问。可在 https://hub.docker.com/r/hchai01/isgpre 下载 Docker 镜像以重现预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33aa/9673497/425d555f67ed/giac103fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验