Li Fengjiao, He Chong, Yao Hanming, Zhao Yue, Ye Xijiu, Zhou Shurui, Zou Jinmao, Li Yaqing, Li Jiajia, Chen Shaojie, Han Fanghai, Huang Kaihong, Lian Guoda, Chen Shangxiang
Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Gastroenterology, Shandong Provincial Hospital Afliated to Shandong First Medical University, Jinan 250021, Shandong, China.
Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
Pharmacol Res. 2023 Jan;187:106555. doi: 10.1016/j.phrs.2022.106555. Epub 2022 Nov 17.
Perineural invasion (PNI) has a high incidence and poor prognosis in pancreatic ductal adenocarcinoma (PDAC). Our study aimed to identify the underlying molecular mechanism of PNI and propose effective intervention strategies.
To observe PNI in vitro and in vivo, a Matrigel/ dorsal root ganglia (DRG) model and a murine sciatic nerve invasion model were respectively used. Magnetic resonance (MR) imaging and positron emission tomography/computed tomography (PET-CT) imaging were also used to evaluate tumor growth. Publicly available datasets and PDAC tissues were used to verify how the nerve cells regulate PDAC cells' PNI.
Our results showed that glutamate from nerve cells could cause calcium influx in PDAC cells via the N-methyl-d-aspartate receptor (NMDAR), subsequently activating the downstream Ca dependent protein kinase CaMKII/ERK-MAPK pathway and promoting the mRNA transcription of gene METTL3. Next, METTL3 upregulates the expression of hexokinase 2 (HK2) through N6-methyladenosine (m6A) modification in mRNA, enhances the PDAC cells' glycolysis, and promotes PNI. Furthermore, the IONPs-PEG-scFvCD44v6-scAbNMDAR2B nanoparticles dual targeting CD44 variant isoform 6 (CD44v6) and t NMDAR subunit 2B (NMDAR2B) on PDAC cells were synthesized and verified showing a satisfactory blocking effect on PNI.
Here, we firstly provided evidence that glutamate from the nerve cells could upregulate the expression of HK2 through mRNA m6A modification via NMDAR2B and downstream Ca dependent CaMKII/ERK-MAPK pathway, enhance the glycolysis in PDAC cells, and ultimately promote PNI. In addition, the dual targeting nanoparticles we synthesized were verified to block PNI effectively in PDAC.
神经周围浸润(PNI)在胰腺导管腺癌(PDAC)中发生率高且预后差。我们的研究旨在确定PNI的潜在分子机制并提出有效的干预策略。
为了在体外和体内观察PNI,分别使用了基质胶/背根神经节(DRG)模型和小鼠坐骨神经侵袭模型。还使用磁共振(MR)成像和正电子发射断层扫描/计算机断层扫描(PET-CT)成像来评估肿瘤生长。利用公开可用的数据集和PDAC组织来验证神经细胞如何调节PDAC细胞的PNI。
我们的结果表明,神经细胞释放的谷氨酸可通过N-甲基-D-天冬氨酸受体(NMDAR)使PDAC细胞内钙离子流入,随后激活下游的钙依赖性蛋白激酶CaMKII/ERK-MAPK通路,并促进基因METTL3的mRNA转录。接下来,METTL3通过对mRNA进行N6-甲基腺苷(m6A)修饰上调己糖激酶2(HK2)的表达,增强PDAC细胞的糖酵解,并促进PNI。此外,合成了在PDAC细胞上双重靶向CD44变异体6(CD44v6)和N-甲基-D-天冬氨酸受体亚基2B(NMDAR2B)的IONPs-PEG-scFvCD44v6-scAbNMDAR2B纳米颗粒,并验证其对PNI具有令人满意的阻断作用。
在此,我们首先提供证据表明,神经细胞释放的谷氨酸可通过NMDAR2B及下游钙依赖性CaMKII/ERK-MAPK通路经mRNA m6A修饰上调HK2的表达,增强PDAC细胞的糖酵解,并最终促进PNI。此外,我们合成的双重靶向纳米颗粒经验证可有效阻断PDAC中的PNI。