Suppr超能文献

带有下肢机器人的脑机接口系统通过短期训练改善脊髓损伤患者的康复效果:一项初步研究。

BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training: a pilot study.

作者信息

Cui Zhengzhe, Li Yongqiang, Huang Sisi, Wu Xixi, Fu Xiangxiang, Liu Fei, Wan Xiaojiao, Wang Xue, Zhang Yuting, Qiu Huaide, Chen Fang, Yang Peijin, Zhu Shiqiang, Li Jianan, Chen Weidong

机构信息

School of Mechanical Engineering, Zhejiang University, Hangzhou, China.

The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

出版信息

Cogn Neurodyn. 2022 Dec;16(6):1283-1301. doi: 10.1007/s11571-022-09801-6. Epub 2022 Apr 10.

Abstract

UNLABELLED

In the recent years, the increasing applications of brain-computer interface (BCI) in rehabilitation programs have enhanced the chances of functional recovery for patients with neurological disorders. We presented and validated a BCI system with a lower-limb robot for short-term training of patients with spinal cord injury (SCI). The cores of this system included: (1) electroencephalogram (EEG) features related to motor intention reported through experiments and used to drive the robot; (2) a decision tree to determine the training mode provided for patients with different degrees of injuries. Seven SCI patients (one American Spinal Injury Association Impairment Scale (AIS) A, three AIS B, and three AIS C) participated in the short-term training with this system. All patients could learn to use the system rapidly and maintained a high intensity during the training program. The strength of the lower limb key muscles of the patients was improved. Four AIS A/B patients were elevated to AIS C. The cumulative results indicate that clinical application of the BCI system with lower-limb robot is feasible and safe, and has potentially positive effects on SCI patients.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s11571-022-09801-6.

摘要

未标注

近年来,脑机接口(BCI)在康复项目中的应用不断增加,提高了神经功能障碍患者功能恢复的机会。我们展示并验证了一种用于脊髓损伤(SCI)患者短期训练的带有下肢机器人的BCI系统。该系统的核心包括:(1)通过实验报告的与运动意图相关的脑电图(EEG)特征,并用于驱动机器人;(2)一个决策树,用于确定为不同损伤程度的患者提供的训练模式。七名SCI患者(一名美国脊髓损伤协会损伤分级(AIS)A级、三名AIS B级和三名AIS C级)参与了该系统的短期训练。所有患者都能迅速学会使用该系统,并在训练过程中保持高强度。患者下肢关键肌肉的力量得到了改善。四名AIS A/B级患者提升至AIS C级。累积结果表明,带有下肢机器人的BCI系统的临床应用是可行且安全的,对SCI患者具有潜在的积极影响。

补充信息

在线版本包含可在10.1007/s11571-022-09801-6获取的补充材料。

相似文献

1
BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training: a pilot study.
Cogn Neurodyn. 2022 Dec;16(6):1283-1301. doi: 10.1007/s11571-022-09801-6. Epub 2022 Apr 10.
2
5
KITE-BCI: A brain-computer interface system for functional electrical stimulation therapy.
J Spinal Cord Med. 2021;44(sup1):S203-S214. doi: 10.1080/10790268.2021.1970895.
6
The clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation: a meta-analysis and systematic review.
Disabil Rehabil Assist Technol. 2024 Jan;19(1):30-41. doi: 10.1080/17483107.2022.2060354. Epub 2022 Apr 21.
7
Brain-Computer Interface Priming for Cervical Transcutaneous Spinal Cord Stimulation Therapy: An Exploratory Case Study.
Front Rehabil Sci. 2022 Jun 23;3:896766. doi: 10.3389/fresc.2022.896766. eCollection 2022.
8
Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
Spine J. 2014 Dec 1;14(12):2847-53. doi: 10.1016/j.spinee.2014.03.042. Epub 2014 Apr 4.
10
EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots.
Front Hum Neurosci. 2018 Aug 6;12:312. doi: 10.3389/fnhum.2018.00312. eCollection 2018.

引用本文的文献

3
Using Artificial Intelligence in the Comprehensive Management of Spinal Cord Injury.
Korean J Neurotrauma. 2024 Dec 24;20(4):215-224. doi: 10.13004/kjnt.2024.20.e43. eCollection 2024 Dec.
4
Functional connectivity of EEG motor rhythms after spinal cord injury.
Cogn Neurodyn. 2024 Oct;18(5):3015-3029. doi: 10.1007/s11571-024-10136-7. Epub 2024 Jun 10.
5
Knowledge mapping and research trends of brain-computer interface technology in rehabilitation: a bibliometric analysis.
Front Hum Neurosci. 2024 Oct 30;18:1486167. doi: 10.3389/fnhum.2024.1486167. eCollection 2024.
7
Optimizing lower limb rehabilitation: the intersection of machine learning and rehabilitative robotics.
Front Rehabil Sci. 2024 Jan 26;5:1246773. doi: 10.3389/fresc.2024.1246773. eCollection 2024.

本文引用的文献

2
Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface.
Cell. 2020 May 14;181(4):763-773.e12. doi: 10.1016/j.cell.2020.03.054. Epub 2020 Apr 23.
3
Novel hybrid brain-computer interface system based on motor imagery and P300.
Cogn Neurodyn. 2020 Apr;14(2):253-265. doi: 10.1007/s11571-019-09560-x. Epub 2019 Oct 21.
4
Sensory retraining improves light touch threshold of the paretic hand in chronic stroke survivors: a single-subject A-B design.
Somatosens Mot Res. 2020 Jun;37(2):74-83. doi: 10.1080/08990220.2020.1736021. Epub 2020 Mar 12.
7
Noninvasive neuroimaging enhances continuous neural tracking for robotic device control.
Sci Robot. 2019 Jun 26;4(31). doi: 10.1126/scirobotics.aaw6844. Epub 2019 Jun 19.
8
Proprioception: Bottom-up directive for motor recovery after spinal cord injury.
Neurosci Res. 2020 May;154:1-8. doi: 10.1016/j.neures.2019.07.005. Epub 2019 Jul 20.
9
A cognitive brain-computer interface monitoring sustained attentional variations during a continuous task.
Cogn Neurodyn. 2019 Jun;13(3):257-269. doi: 10.1007/s11571-019-09521-4. Epub 2019 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验