Suppr超能文献

优化下肢康复:机器学习与康复机器人技术的交叉点。

Optimizing lower limb rehabilitation: the intersection of machine learning and rehabilitative robotics.

作者信息

Zhang Xiaoqian, Rong Xiyin, Luo Hanwen

机构信息

Department of Joint Osteopathy, Liuzhou Worker's Hospital, Liuzhou, Guangxi, China.

Center of Neuroengineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Front Rehabil Sci. 2024 Jan 26;5:1246773. doi: 10.3389/fresc.2024.1246773. eCollection 2024.

Abstract

Lower limb rehabilitation is essential for recovery post-injury, stroke, or surgery, improving functional mobility and quality of life. Traditional therapy, dependent on therapists' expertise, faces challenges that are addressed by rehabilitation robotics. In the domain of lower limb rehabilitation, machine learning is progressively manifesting its capabilities in high personalization and data-driven approaches, gradually transforming methods of optimizing treatment protocols and predicting rehabilitation outcomes. However, this evolution faces obstacles, including model interpretability, economic hurdles, and regulatory constraints. This review explores the synergy between machine learning and robotic-assisted lower limb rehabilitation, summarizing scientific literature and highlighting various models, data, and domains. Challenges are critically addressed, and future directions proposed for more effective clinical integration. Emphasis is placed on upcoming applications such as Virtual Reality and the potential of deep learning in refining rehabilitation training. This examination aims to provide insights into the evolving landscape, spotlighting the potential of machine learning in rehabilitation robotics and encouraging balanced exploration of current challenges and future opportunities.

摘要

下肢康复对于受伤、中风或手术后的恢复至关重要,可改善功能活动能力和生活质量。传统疗法依赖治疗师的专业知识,面临着一些挑战,而康复机器人技术则可解决这些问题。在下肢康复领域,机器学习正逐渐在高度个性化和数据驱动的方法中展现其能力,逐步改变优化治疗方案和预测康复结果的方法。然而,这一发展面临障碍,包括模型可解释性、经济障碍和监管限制。本综述探讨了机器学习与机器人辅助下肢康复之间的协同作用,总结科学文献并突出各种模型、数据和领域。对挑战进行了批判性分析,并提出了更有效临床整合的未来方向。重点关注即将出现的应用,如虚拟现实以及深度学习在完善康复训练方面的潜力。本次研究旨在深入了解不断演变的格局,突出机器学习在康复机器人技术中的潜力,并鼓励对当前挑战和未来机遇进行全面探索。

相似文献

1
Optimizing lower limb rehabilitation: the intersection of machine learning and rehabilitative robotics.
Front Rehabil Sci. 2024 Jan 26;5:1246773. doi: 10.3389/fresc.2024.1246773. eCollection 2024.
5
Effectiveness of robotic assisted rehabilitation for mobility and functional ability in adult stroke patients: a systematic review.
JBI Database System Rev Implement Rep. 2017 Dec;15(12):3049-3091. doi: 10.11124/JBISRIR-2017-003456.
7
Personalized rehabilitation approach for reaching movement using reinforcement learning.
Sci Rep. 2024 Jul 30;14(1):17675. doi: 10.1038/s41598-024-64514-6.
8
Rehabilitation robotics for the upper extremity: review with new directions for orthopaedic disorders.
Disabil Rehabil Assist Technol. 2017 Nov;12(8):765-771. doi: 10.1080/17483107.2016.1269211. Epub 2016 Dec 30.
9
Robotic treatment of the upper limb in chronic stroke and cerebral neuroplasticity: a systematic review.
J Biol Regul Homeost Agents. 2020 Sep-Oct;34(5 Suppl. 3):11-44. Technology in Medicine.
10
System Framework of Robotics in Upper Limb Rehabilitation on Poststroke Motor Recovery.
Behav Neurol. 2018 Dec 13;2018:6737056. doi: 10.1155/2018/6737056. eCollection 2018.

引用本文的文献

1
Advances in sciatic nerve regeneration: A review of contemporary techniques.
Regen Ther. 2025 May 6;29:563-574. doi: 10.1016/j.reth.2025.04.016. eCollection 2025 Jun.
3
Motion control and singular perturbation algorithms for lower limb rehabilitation robots.
Front Neurorobot. 2025 May 9;19:1562519. doi: 10.3389/fnbot.2025.1562519. eCollection 2025.
4
Validating Questionnaires for Lower Limb Rehabilitation Systems and Devices: A Scoping Review.
Sports (Basel). 2025 Jan 2;13(1):4. doi: 10.3390/sports13010004.
5
Gait Impairment Analysis Using Silhouette Sinogram Signals and Assisted Knowledge Learning.
Bioengineering (Basel). 2024 May 10;11(5):477. doi: 10.3390/bioengineering11050477.

本文引用的文献

1
Autonomous motion and control of lower limb exoskeleton rehabilitation robot.
Front Bioeng Biotechnol. 2023 Jul 14;11:1223831. doi: 10.3389/fbioe.2023.1223831. eCollection 2023.
2
Spasticity evaluation with the Amadeo Tyromotion device in patients with hemispheric stroke.
Front Neurorobot. 2023 Jul 5;17:1172770. doi: 10.3389/fnbot.2023.1172770. eCollection 2023.
4
Use of machine learning in the field of prosthetics and orthotics: A systematic narrative review.
Prosthet Orthot Int. 2023 Jun 1;47(3):226-240. doi: 10.1097/PXR.0000000000000199. Epub 2023 Feb 21.
5
BCI system with lower-limb robot improves rehabilitation in spinal cord injury patients through short-term training: a pilot study.
Cogn Neurodyn. 2022 Dec;16(6):1283-1301. doi: 10.1007/s11571-022-09801-6. Epub 2022 Apr 10.
6
Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead.
Nat Mach Intell. 2019 May;1(5):206-215. doi: 10.1038/s42256-019-0048-x. Epub 2019 May 13.
9
Robot-Assisted Therapy and Constraint-Induced Movement Therapy for Motor Recovery in Stroke: Results From a Randomized Clinical Trial.
Front Neurorobot. 2021 Jul 21;15:684019. doi: 10.3389/fnbot.2021.684019. eCollection 2021.
10
Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance.
Front Robot AI. 2021 Jul 19;8:702845. doi: 10.3389/frobt.2021.702845. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验