Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
Nat Commun. 2022 Nov 21;13(1):7133. doi: 10.1038/s41467-022-34807-3.
The rational design of PROTACs is difficult due to their obscure structure-activity relationship. This study introduces a deep neural network model - DeepPROTACs to help design potent PROTACs molecules. It can predict the degradation capacity of a proposed PROTAC molecule based on structures of given target protein and E3 ligase. The experimental dataset is mainly collected from PROTAC-DB and appropriately labeled according to the DC and Dmax values. In the model of DeepPROTACs, the ligands as well as the ligand binding pockets are generated and represented with graphs and fed into Graph Convolutional Networks for feature extraction. While SMILES representations of linkers are fed into a Bidirectional Long Short-Term Memory layer to generate the features. Experiments show that DeepPROTACs model achieves 77.95% average prediction accuracy and 0.8470 area under receiver operating characteristic curve on the test set. DeepPROTACs is available online at a web server ( https://bailab.siais.shanghaitech.edu.cn/services/deepprotacs/ ) and at github ( https://github.com/fenglei104/DeepPROTACs ).
由于其结构-活性关系不明确,PROTACs 的合理设计具有一定难度。本研究引入了一种深度神经网络模型——DeepPROTACs,以帮助设计有效的 PROTAC 分子。它可以根据给定的靶蛋白和 E3 连接酶的结构,预测所提出的 PROTAC 分子的降解能力。实验数据集主要从 PROTAC-DB 中收集,并根据 DC 和 Dmax 值进行适当标记。在 DeepPROTACs 模型中,配体以及配体结合口袋都通过图形生成并表示,并将其输入图卷积网络进行特征提取。而接头的 SMILES 表示则输入双向长短时记忆层以生成特征。实验表明,DeepPROTACs 模型在测试集上的平均预测准确率为 77.95%,接收器工作特征曲线下的面积为 0.8470。DeepPROTACs 可在网页服务器(https://bailab.siais.shanghaitech.edu.cn/services/deepprotacs/)和 github(https://github.com/fenglei104/DeepPROTACs)上使用。