Division of Nephrology, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA.
Hum Mol Genet. 2023 Mar 6;32(6):1048-1060. doi: 10.1093/hmg/ddac290.
Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.
糖尿病肾病(DKD)是一个重要的公共卫生挑战。然而,其基因组机制尚不清楚。为了鉴定 DKD 的罕见变异,我们利用对慢性肾病和糖尿病进行了良好表型分析的大型队列进行了全外显子组测序(WES)研究。我们的两阶段 WES 研究包括来自慢性肾功能不全队列和社区动脉粥样硬化风险研究的 4372 名欧洲和非洲血统参与者(第 1 阶段)和 11487 名多血统用于精准医学的跨组学参与者(第 2 阶段)。广义线性混合模型考虑了遗传相关性,并根据年龄、性别和血统进行了调整,用于测试单变体与 DKD 之间的关联。使用在我们的混合模型框架内实现的优化序列核关联测试,对基于基因的罕见变异综合分析进行了研究。通过起始糖尿病,我们确定了四个新的全外显子组显著的 DKD 相关基因座。在单变体分析中,与非携带者相比,携带 DIS3L2 基因内罕见框移插入(rs141560952)的参与者患 DKD 的几率增加了 193 倍[95%置信区间(CI):33.6,1105](P=3.59×10-9)。同样,每个低频 KRT6B 剪接位点变异(rs425827)的拷贝数赋予 DKD 更高的几率增加 5.31 倍(95%CI:3.06,9.21)(P=2.72×10-9)。基于基因的综合分析进一步确定了 ERAP2(P=4.03×10-8)和 NPEPPS(P=1.51×10-7),这两个基因都在肾脏中表达,并与肾素-血管紧张素-醛固酮系统调节的免疫反应有关。在 DKD 的最大 WES 研究中,我们确定了新的罕见变异基因座,达到全外显子组的显著水平。这些发现为 DKD 的分子机制提供了新的见解。