Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America.
Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America.
PLoS Comput Biol. 2022 Dec 7;18(12):e1010230. doi: 10.1371/journal.pcbi.1010230. eCollection 2022 Dec.
Antibody epitope mapping of viral proteins plays a vital role in understanding immune system mechanisms of protection. In the case of class I viral fusion proteins, recent advances in cryo-electron microscopy and protein stabilization techniques have highlighted the importance of cryptic or 'alternative' conformations that expose epitopes targeted by potent neutralizing antibodies. Thorough epitope mapping of such metastable conformations is difficult but is critical for understanding sites of vulnerability in class I fusion proteins that occur as transient conformational states during viral attachment and fusion. We introduce a novel method Accelerated class I fusion protein Epitope Mapping (AxIEM) that accounts for fusion protein flexibility to improve out-of-sample prediction of discontinuous antibody epitopes. Harnessing data from previous experimental epitope mapping efforts of several class I fusion proteins, we demonstrate that accuracy of epitope prediction depends on residue environment and allows for the prediction of conformation-dependent antibody target residues. We also show that AxIEM can identify common epitopes and provide structural insights for the development and rational design of vaccines.
病毒蛋白的抗体表位作图在理解保护免疫系统机制方面起着至关重要的作用。在 I 类病毒融合蛋白的情况下,冷冻电子显微镜和蛋白质稳定技术的最新进展强调了隐藏或“替代”构象的重要性,这些构象暴露了强效中和抗体靶向的表位。对这种亚稳态构象进行彻底的表位作图很困难,但对于理解 I 类融合蛋白在病毒附着和融合过程中作为短暂构象状态发生的脆弱部位至关重要。我们引入了一种新的方法,即加速 I 类融合蛋白表位作图(AxIEM),该方法考虑了融合蛋白的灵活性,以提高离散抗体表位的样本外预测准确性。利用来自几个 I 类融合蛋白先前实验表位作图工作的数据,我们证明了表位预测的准确性取决于残基环境,并允许预测构象依赖性抗体靶标残基。我们还表明,AxIEM 可以识别常见的表位,并为疫苗的开发和合理设计提供结构见解。