Suppr超能文献

赖氨酸乙酰转移酶抑制剂的生物学医学启示

KATs off: Biomedical insights from lysine acetyltransferase inhibitors.

机构信息

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.

Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.

出版信息

Curr Opin Chem Biol. 2023 Feb;72:102255. doi: 10.1016/j.cbpa.2022.102255. Epub 2022 Dec 28.

Abstract

Lysine acetyltransferase (KAT) enzymes including the p300, MYST, and GCN5 families play major roles in modulating the structure of chromatin and regulating transcription. Because of their dysregulation in various disease states including cancer, efforts to develop inhibitors of KATs have steadily gained momentum. Here we provide an overview of recent progress on the development of high quality chemical probes of the p300 and MYST family of KATs and how they are emerging as useful tools for basic and translational investigation.

摘要

赖氨酸乙酰转移酶(KAT)酶包括 p300、MYST 和 GCN5 家族,在调节染色质结构和转录调控中发挥重要作用。由于它们在包括癌症在内的各种疾病状态中的失调,开发 KAT 抑制剂的努力一直在稳步推进。本文概述了开发 p300 和 MYST 家族 KAT 的高质量化学探针的最新进展,以及它们如何成为基础和转化研究的有用工具。

相似文献

1
KATs off: Biomedical insights from lysine acetyltransferase inhibitors.
Curr Opin Chem Biol. 2023 Feb;72:102255. doi: 10.1016/j.cbpa.2022.102255. Epub 2022 Dec 28.
2
Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes.
BMC Genomics. 2017 Jul 5;18(1):514. doi: 10.1186/s12864-017-3894-0.
3
Profiling Cellular Substrates of Lysine Acetyltransferases GCN5 and p300 with Orthogonal Labeling and Click Chemistry.
ACS Chem Biol. 2017 Jun 16;12(6):1547-1555. doi: 10.1021/acschembio.7b00114. Epub 2017 Apr 26.
4
Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli.
mBio. 2018 Oct 23;9(5):e01905-18. doi: 10.1128/mBio.01905-18.
5
Quantitative Acetylomics Reveals Substrates of Lysine Acetyltransferase GCN5 in Adult and Aging .
J Proteome Res. 2023 Sep 1;22(9):2909-2924. doi: 10.1021/acs.jproteome.3c00247. Epub 2023 Aug 6.
6
Lysine Acetyltransferases and Their Role in AR Signaling and Prostate Cancer.
Front Endocrinol (Lausanne). 2022 Aug 17;13:886594. doi: 10.3389/fendo.2022.886594. eCollection 2022.
7
Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites.
Mol Cell Proteomics. 2012 Jan;11(1):M111.011080. doi: 10.1074/mcp.M111.011080. Epub 2011 Sep 30.
8
Chemical Biology Approaches for Investigating the Functions of Lysine Acetyltransferases.
Angew Chem Int Ed Engl. 2018 Jan 26;57(5):1162-1184. doi: 10.1002/anie.201704745. Epub 2017 Dec 27.
10
Roles for lysine acetyltransferases during mammalian hibernation.
J Therm Biol. 2018 May;74:71-76. doi: 10.1016/j.jtherbio.2018.03.013. Epub 2018 Mar 15.

引用本文的文献

3
Development of p300-targeting degraders with enhanced selectivity and onset of degradation.
RSC Med Chem. 2025 Mar 3;16(5):2049-2060. doi: 10.1039/d4md00969j. eCollection 2025 May 22.
4
Acetylation: a new target for protein degradation in cancer.
Trends Cancer. 2025 Apr;11(4):403-420. doi: 10.1016/j.trecan.2025.01.013. Epub 2025 Mar 6.
5
Modulation of the substrate preference of a MYST acetyltransferase by a scaffold protein.
J Biol Chem. 2025 Mar;301(3):108262. doi: 10.1016/j.jbc.2025.108262. Epub 2025 Feb 3.
6
Targeting lysine acetylation readers and writers.
Nat Rev Drug Discov. 2025 Feb;24(2):112-133. doi: 10.1038/s41573-024-01080-6. Epub 2024 Nov 21.
7
Paralogue-Selective Degradation of the Lysine Acetyltransferase EP300.
JACS Au. 2024 Jul 29;4(8):3094-3103. doi: 10.1021/jacsau.4c00442. eCollection 2024 Aug 26.
9
The role of acetylation in obesity-induced cardiac metabolic alterations.
J Pharm Pharm Sci. 2024 Jul 23;27:13080. doi: 10.3389/jpps.2024.13080. eCollection 2024.
10
Paralogue-selective degradation of the lysine acetyltransferase EP300.
bioRxiv. 2024 May 5:2024.05.03.592353. doi: 10.1101/2024.05.03.592353.

本文引用的文献

1
Acetylation of histone H2B marks active enhancers and predicts CBP/p300 target genes.
Nat Genet. 2023 Apr;55(4):679-692. doi: 10.1038/s41588-023-01348-4. Epub 2023 Apr 6.
2
Targeting cell cycle and apoptosis to overcome chemotherapy resistance in acute myeloid leukemia.
Leukemia. 2023 Jan;37(1):143-153. doi: 10.1038/s41375-022-01755-2. Epub 2022 Nov 18.
3
Structure of the NuA4 acetyltransferase complex bound to the nucleosome.
Nature. 2022 Oct;610(7932):569-574. doi: 10.1038/s41586-022-05303-x. Epub 2022 Oct 5.
4
The p300 Inhibitor A-485 Exerts Antitumor Activity in Growth Hormone Pituitary Adenoma.
J Clin Endocrinol Metab. 2022 May 17;107(6):e2291-e2300. doi: 10.1210/clinem/dgac128.
6
Histone H2B Deacylation Selectivity: Exploring Chromatin's Dark Matter with an Engineered Sortase.
J Am Chem Soc. 2022 Mar 2;144(8):3360-3364. doi: 10.1021/jacs.1c13555. Epub 2022 Feb 17.
7
YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development.
ACS Chem Biol. 2023 Apr 21;18(4):994-1013. doi: 10.1021/acschembio.1c00945. Epub 2022 Jan 18.
9
EP300 Selectively Controls the Enhancer Landscape of MYCN-Amplified Neuroblastoma.
Cancer Discov. 2022 Mar 1;12(3):730-751. doi: 10.1158/2159-8290.CD-21-0385.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验