Suppr超能文献

影像组学:一种基于放射学证据的人工智能技术,有助于实现肝癌的个体化精准医学。

Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma.

机构信息

Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR. China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, PR. China.

Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR. China.

出版信息

Dig Liver Dis. 2023 Jul;55(7):833-847. doi: 10.1016/j.dld.2022.12.015. Epub 2023 Jan 13.

Abstract

The high postoperative recurrence rates in hepatocellular carcinoma (HCC) remain a major hurdle in its management. Appropriate staging and treatment selection may alleviate the extent of fatal recurrence. However, effective methods to preoperatively evaluate pathophysiologic and molecular characteristics of HCC are lacking. Imaging plays a central role in HCC diagnosis and stratification due to the non-invasive diagnostic criteria. Vast and crucial information is hidden within image data. Other than providing a morphological sketch for lesion diagnosis, imaging could provide new insights to describe the pathophysiological and genetic landscape of HCC. Radiomics aims to facilitate diagnosis and prognosis of HCC using artificial intelligence techniques to harness the immense information contained in medical images. Radiomics produces a set of archetypal and robust imaging features that are correlated to key pathological or molecular biomarkers to preoperatively risk-stratify HCC patients. Inferred with outcome data, comprehensive combination of radiomic, clinical and/or multi-omics data could also improve direct prediction of response to treatment and prognosis. The evolution of radiomics is changing our understanding of personalized precision medicine in HCC management. Herein, we review the key techniques and clinical applications in HCC radiomics and discuss current limitations and future opportunities to improve clinical decision making.

摘要

肝细胞癌 (HCC) 的高术后复发率仍然是其治疗的主要障碍。适当的分期和治疗选择可能减轻致命复发的程度。然而,缺乏术前评估 HCC 病理生理和分子特征的有效方法。由于非侵入性诊断标准,成像在 HCC 诊断和分层中起着核心作用。大量重要的信息隐藏在图像数据中。除了为病变诊断提供形态草图外,成像还可以提供新的见解来描述 HCC 的病理生理和遗传特征。放射组学旨在使用人工智能技术促进 HCC 的诊断和预后,以利用医学图像中包含的大量信息。放射组学产生了一组典型且稳健的成像特征,这些特征与关键的病理或分子生物标志物相关联,以对 HCC 患者进行术前风险分层。根据预后数据,放射组学、临床和/或多组学数据的综合组合也可以提高对治疗反应和预后的直接预测。放射组学的发展正在改变我们对 HCC 管理中个性化精准医学的理解。本文综述了 HCC 放射组学的关键技术和临床应用,并讨论了提高临床决策的当前限制和未来机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验