Suppr超能文献

基于深度极限机器学习方法的车辆中COVID-19检测机制

COVID-19 Detection Mechanism in Vehicles Using a Deep Extreme Machine Learning Approach.

作者信息

Fatima Areej, Shahzad Tariq, Abbas Sagheer, Rehman Abdur, Saeed Yousaf, Alharbi Meshal, Khan Muhammad Adnan, Ouahada Khmaies

机构信息

Department of Computer Science, Lahore Garrison University, Lahore 54000, Pakistan.

Department of Electrical and Computer Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal 57000, Pakistan.

出版信息

Diagnostics (Basel). 2023 Jan 11;13(2):270. doi: 10.3390/diagnostics13020270.

Abstract

COVID-19 is a rapidly spreading pandemic, and early detection is important to halting the spread of infection. Recently, the outbreak of this virus has severely affected people around the world with increasing death rates. The increased death rates are because of its spreading nature among people, mainly through physical interactions. Therefore, it is very important to control the spreading of the virus and detect people's symptoms during the initial stages so proper preventive measures can be taken in good time. In response to COVID-19, revolutionary automation such as deep learning, machine learning, image processing, and medical images such as chest radiography (CXR) and computed tomography (CT) have been developed in this environment. Currently, the coronavirus is identified via an RT-PCR test. Alternative solutions are required due to the lengthy moratorium period and the large number of false-negative estimations. To prevent the spreading of the virus, we propose the Vehicle-based COVID-19 Detection System to reveal the related symptoms of a person in the vehicles. Moreover, deep extreme machine learning is applied. The proposed system uses headaches, flu, fever, cough, chest pain, shortness of breath, tiredness, nasal congestion, diarrhea, breathing difficulty, and pneumonia. The symptoms are considered parameters to reveal the presence of COVID-19 in a person. Our proposed approach in Vehicles will make it easier for governments to perform COVID-19 tests timely in cities. Due to the ambiguous nature of symptoms in humans, we utilize fuzzy modeling for simulation. The suggested COVID-19 detection model achieved an accuracy of more than 90%.

摘要

新冠病毒病(COVID-19)是一种迅速传播的大流行病,早期检测对于遏制感染传播至关重要。最近,这种病毒的爆发已严重影响全球各地的人们,死亡率不断上升。死亡率上升是由于其在人群中的传播特性,主要通过身体接触传播。因此,控制病毒传播并在初始阶段检测人们的症状,以便及时采取适当的预防措施非常重要。针对新冠病毒病(COVID-19),在这种环境下已经开发了诸如深度学习、机器学习、图像处理等革命性自动化技术以及胸部X光摄影(CXR)和计算机断层扫描(CT)等医学图像技术。目前,冠状病毒是通过逆转录聚合酶链反应(RT-PCR)检测来识别的。由于检测暂停期长以及大量假阴性估计,需要其他解决方案。为防止病毒传播,我们提出基于车辆的新冠病毒病(COVID-19)检测系统,以揭示车内人员的相关症状。此外,还应用了深度极限机器学习。所提出的系统使用头痛、流感、发烧、咳嗽、胸痛、呼吸急促、疲劳、鼻塞、腹泻、呼吸困难和肺炎等症状。这些症状被视为揭示一个人是否感染新冠病毒病(COVID-19)的参数。我们在车辆中的提议方法将使政府更容易在城市中及时进行新冠病毒病(COVID-19)检测。由于人类症状的模糊性,我们利用模糊建模进行模拟。所建议的新冠病毒病(COVID-19)检测模型准确率超过90%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfb4/9858069/cb5e36ce0e9d/diagnostics-13-00270-g001.jpg

相似文献

1
COVID-19 Detection Mechanism in Vehicles Using a Deep Extreme Machine Learning Approach.
Diagnostics (Basel). 2023 Jan 11;13(2):270. doi: 10.3390/diagnostics13020270.
2
Machine learning-based automatic detection of novel coronavirus (COVID-19) disease.
Multimed Tools Appl. 2022;81(10):13731-13750. doi: 10.1007/s11042-022-12508-9. Epub 2022 Feb 23.
3
QUCoughScope: An Intelligent Application to Detect COVID-19 Patients Using Cough and Breath Sounds.
Diagnostics (Basel). 2022 Apr 7;12(4):920. doi: 10.3390/diagnostics12040920.
4
COVID-19 detection in CT and CXR images using deep learning models.
Biogerontology. 2022 Feb;23(1):65-84. doi: 10.1007/s10522-021-09946-7. Epub 2022 Jan 22.
5
COVID-DSNet: A novel deep convolutional neural network for detection of coronavirus (SARS-CoV-2) cases from CT and Chest X-Ray images.
Artif Intell Med. 2022 Dec;134:102427. doi: 10.1016/j.artmed.2022.102427. Epub 2022 Oct 17.
7
Automated image classification of chest X-rays of COVID-19 using deep transfer learning.
Results Phys. 2021 Sep;28:104529. doi: 10.1016/j.rinp.2021.104529. Epub 2021 Jul 28.
9
An IoT-Based Deep Learning Framework for Early Assessment of Covid-19.
IEEE Internet Things J. 2020 Oct 27;8(21):15855-15862. doi: 10.1109/JIOT.2020.3034074. eCollection 2021 Nov 1.
10
A review of deep learning-based detection methods for COVID-19.
Comput Biol Med. 2022 Apr;143:105233. doi: 10.1016/j.compbiomed.2022.105233. Epub 2022 Jan 29.

引用本文的文献

1
Qualitative Study on Emotional Experiences and Coping Strategies in Patients With COVID-19 During the Early Stage of Wuhan Crisis.
Depress Anxiety. 2024 Sep 24;2024:6696049. doi: 10.1155/2024/6696049. eCollection 2024.
2
Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review.
Heliyon. 2024 Aug 23;10(17):e36743. doi: 10.1016/j.heliyon.2024.e36743. eCollection 2024 Sep 15.

本文引用的文献

2
An Imaging Overview of COVID-19 ARDS in ICU Patients and Its Complications: A Pictorial Review.
Diagnostics (Basel). 2022 Mar 29;12(4):846. doi: 10.3390/diagnostics12040846.
5
A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19).
Eur Radiol. 2021 Aug;31(8):6096-6104. doi: 10.1007/s00330-021-07715-1. Epub 2021 Feb 24.
7
COVID-19 epidemic outside China: 34 founders and exponential growth.
J Investig Med. 2021 Jan;69(1):52-55. doi: 10.1136/jim-2020-001491. Epub 2020 Oct 6.
8
Optimization Method for Forecasting Confirmed Cases of COVID-19 in China.
J Clin Med. 2020 Mar 2;9(3):674. doi: 10.3390/jcm9030674.
10
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.
Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验