Suppr超能文献

利用多模态数据进行机器学习可预测选择性激光烧结 3D 打印药物产品的生产。

Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products.

机构信息

UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.

出版信息

Int J Pharm. 2023 Feb 25;633:122628. doi: 10.1016/j.ijpharm.2023.122628. Epub 2023 Jan 20.

Abstract

Three-dimensional (3D) printing is drastically redefining medicine production, offering digital precision and personalized design opportunities. One emerging 3D printing technology is selective laser sintering (SLS), which is garnering attention for its high precision, and compatibility with a wide range of pharmaceutical materials, including low-solubility compounds. However, the full potential of SLS for medicines is yet to be realized, requiring expertise and considerable time-consuming and resource-intensive trial-and-error research. Machine learning (ML), a subset of artificial intelligence, is an in silico tool that is accomplishing remarkable breakthroughs in several sectors for its ability to make highly accurate predictions. Therefore, the present study harnessed ML to predict the printability of SLS formulations. Using a dataset of 170 formulations from 78 materials, ML models were developed from inputs that included the formulation composition and characterization data retrieved from Fourier-transformed infrared spectroscopy (FT-IR), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Multiple ML models were explored, including supervised and unsupervised approaches. The results revealed that ML can achieve high accuracies, by using the formulation composition leading to a maximum F1 score of 81.9%. Using the FT-IR, XRPD and DSC data as inputs resulted in an F1 score of 84.2%, 81.3%, and 80.1%, respectively. A subsequent ML pipeline was built to combine the predictions from FT-IR, XRPD and DSC into one consensus model, where the F1 score was found to further increase to 88.9%. Therefore, it was determined for the first time that ML predictions of 3D printability benefit from multi-modal data, combining numeric, spectral, thermogram and diffraction data. The study lays the groundwork for leveraging existing characterization data for developing high-performing computational models to accelerate formulation development.

摘要

三维(3D)打印正在彻底改变医学生产,提供数字精准度和个性化设计机会。一种新兴的 3D 打印技术是选择性激光烧结(SLS),它因高精度和与包括低溶解度化合物在内的广泛药物材料的兼容性而受到关注。然而,SLS 在药物方面的全部潜力尚未实现,需要专业知识和大量耗时且资源密集型的反复试验研究。机器学习(ML)是人工智能的一个子集,它是一种基于计算机的工具,因其能够进行高度准确的预测而在多个领域取得了显著的突破。因此,本研究利用机器学习来预测 SLS 配方的可打印性。使用来自 78 种材料的 170 种配方的数据集,从包括从傅里叶变换红外光谱(FT-IR)、X 射线粉末衍射(XRPD)和差示扫描量热法(DSC)中检索到的配方组成和特性数据的输入中开发了 ML 模型。探索了多种 ML 模型,包括有监督和无监督方法。结果表明,ML 可以通过使用配方组成实现高精度,最高 F1 评分为 81.9%。使用 FT-IR、XRPD 和 DSC 数据作为输入,F1 评分为 84.2%、81.3%和 80.1%。随后构建了一个 ML 管道,将来自 FT-IR、XRPD 和 DSC 的预测结合到一个共识模型中,发现 F1 评分进一步提高到 88.9%。因此,首次确定 3D 可打印性的 ML 预测受益于多模态数据,结合数字、光谱、热谱和衍射数据。该研究为利用现有特性数据开发高性能计算模型以加速配方开发奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验