Suppr超能文献

机械加载对于启动发育中的鼠肌腱结合处细胞外基质的沉积是必需的。

Mechanical loading is required for initiation of extracellular matrix deposition at the developing murine myotendinous junction.

机构信息

Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN 47907, United States; The Indiana University Medical Scientist/Engineer Training Program, Indianapolis, IN 46202, United States.

Purdue University Interdisciplinary Life Science Program, 155 S. Grant Street, West Lafayette, IN 47907, United States.

出版信息

Matrix Biol. 2023 Feb;116:28-48. doi: 10.1016/j.matbio.2023.01.003. Epub 2023 Jan 26.

Abstract

The myotendinous junction (MTJ) contributes to the generation of motion by connecting muscle to tendon. At the adult MTJ, a specialized extracellular matrix (ECM) is thought to contribute to the mechanical integrity of the muscle-tendon interface, but the factors that influence MTJ formation during mammalian development are unclear. Here, we combined 3D imaging and proteomics with murine models in which muscle contractility and patterning are disrupted to resolve morphological and compositional changes in the ECM during MTJ development. We found that MTJ-specific ECM deposition can be initiated via static loading due to growth; however, it required cyclic loading to develop a mature morphology. Furthermore, the MTJ can mature without the tendon terminating into cartilage. Based on these results, we describe a model wherein MTJ development depends on mechanical loading but not insertion into an enthesis.

摘要

肌-腱连接(MTJ)通过将肌肉连接到肌腱来产生运动。在成人 MTJ 中,一种特殊的细胞外基质(ECM)被认为有助于肌肉-肌腱界面的机械完整性,但在哺乳动物发育过程中影响 MTJ 形成的因素尚不清楚。在这里,我们结合了 3D 成像和蛋白质组学,并结合了肌肉收缩和模式形成受到干扰的小鼠模型,以解决 MTJ 发育过程中 ECM 的形态和组成变化。我们发现,由于生长导致的静态加载可以启动 MTJ 特异性 ECM 沉积;然而,它需要循环加载才能形成成熟的形态。此外,即使肌腱没有终止于软骨,MTJ 也可以成熟。基于这些结果,我们描述了一个模型,其中 MTJ 的发育取决于机械加载而不是插入附关节。

相似文献

1
2
Preparation of decellularized biphasic hierarchical myotendinous junction extracellular matrix for muscle regeneration.
Acta Biomater. 2018 Mar 1;68:15-28. doi: 10.1016/j.actbio.2017.12.035. Epub 2017 Dec 30.
3
Larger interface area at the human myotendinous junction in type 1 compared with type 2 muscle fibers.
Scand J Med Sci Sports. 2023 Feb;33(2):136-145. doi: 10.1111/sms.14246. Epub 2022 Oct 28.
4
An engineered in vitro model of the human myotendinous junction.
Acta Biomater. 2024 May;180:279-294. doi: 10.1016/j.actbio.2024.04.007. Epub 2024 Apr 10.
5
RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans.
Am J Physiol Cell Physiol. 2021 Sep 1;321(3):C453-C470. doi: 10.1152/ajpcell.00218.2021. Epub 2021 Jul 14.
6
Knockdown of col22a1 gene in zebrafish induces a muscular dystrophy by disruption of the myotendinous junction.
Development. 2013 Nov;140(22):4602-13. doi: 10.1242/dev.096024. Epub 2013 Oct 16.
7
The telocytes relationship with satellite cells: Extracellular vesicles mediate the myotendinous junction remodeling.
Microsc Res Tech. 2024 Aug;87(8):1733-1741. doi: 10.1002/jemt.24549. Epub 2024 Mar 19.
8
Age-related remodelling of the myotendinous junction in the mouse soleus muscle.
Exp Gerontol. 2018 Apr;104:52-59. doi: 10.1016/j.exger.2018.01.021. Epub 2018 Feb 3.
9
Distinct myofibre domains of the human myotendinous junction revealed by single-nucleus RNA sequencing.
J Cell Sci. 2023 Apr 15;136(8). doi: 10.1242/jcs.260913. Epub 2023 Apr 24.

引用本文的文献

2
3D-environment and muscle contraction regulate the heterogeneity of myonuclei.
Skelet Muscle. 2024 Nov 11;14(1):27. doi: 10.1186/s13395-024-00359-x.
3
Engineering interfacial tissues: The myotendinous junction.
APL Bioeng. 2024 Jun 3;8(2):021505. doi: 10.1063/5.0189221. eCollection 2024 Jun.
4
Extracellular matrix protein composition dynamically changes during murine forelimb development.
iScience. 2024 Jan 9;27(2):108838. doi: 10.1016/j.isci.2024.108838. eCollection 2024 Feb 16.
5
Lack of skeletal muscle contraction disrupts fibrous tissue morphogenesis in the developing murine knee.
J Orthop Res. 2023 Oct;41(10):2305-2314. doi: 10.1002/jor.25659. Epub 2023 Jul 26.

本文引用的文献

1
Extracellular matrix protein composition dynamically changes during murine forelimb development.
iScience. 2024 Jan 9;27(2):108838. doi: 10.1016/j.isci.2024.108838. eCollection 2024 Feb 16.
2
Distinct myofibre domains of the human myotendinous junction revealed by single-nucleus RNA sequencing.
J Cell Sci. 2023 Apr 15;136(8). doi: 10.1242/jcs.260913. Epub 2023 Apr 24.
3
Cellular taxonomy of Hic1 mesenchymal progenitor derivatives in the limb: from embryo to adult.
Nat Commun. 2022 Aug 25;13(1):4989. doi: 10.1038/s41467-022-32695-1.
4
Lack of the myotendinous junction marker col22a1 results in posture and locomotion disabilities in zebrafish.
Matrix Biol. 2022 May;109:1-18. doi: 10.1016/j.matbio.2022.03.002. Epub 2022 Mar 9.
5
The proteomic profile of the human myotendinous junction.
iScience. 2022 Jan 29;25(2):103836. doi: 10.1016/j.isci.2022.103836. eCollection 2022 Feb 18.
6
Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study.
Skelet Muscle. 2021 Nov 2;11(1):24. doi: 10.1186/s13395-021-00279-0.
7
Mechanical Stimulation Muscle Activity Is Necessary for the Maturation of Tendon Multiscale Mechanics During Embryonic Development.
Front Cell Dev Biol. 2021 Sep 3;9:725563. doi: 10.3389/fcell.2021.725563. eCollection 2021.
8
RNA sequencing and immunofluorescence of the myotendinous junction of mature horses and humans.
Am J Physiol Cell Physiol. 2021 Sep 1;321(3):C453-C470. doi: 10.1152/ajpcell.00218.2021. Epub 2021 Jul 14.
9
Muscle-nerve communication and the molecular assessment of human skeletal muscle denervation with aging.
Am J Physiol Cell Physiol. 2021 Aug 1;321(2):C317-C329. doi: 10.1152/ajpcell.00174.2021. Epub 2021 Jun 23.
10
Fibroblast fusion to the muscle fiber regulates myotendinous junction formation.
Nat Commun. 2021 Jun 22;12(1):3852. doi: 10.1038/s41467-021-24159-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验