Suppr超能文献

评估多基因风险评分以区分 1 型和 2 型糖尿病。

Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes.

机构信息

Montreal Heart Institute Research Centre, Montréal, Québec, Canada.

Université de Montréal, Montréal, Québec, Canada.

出版信息

Genet Epidemiol. 2023 Jun;47(4):303-313. doi: 10.1002/gepi.22521. Epub 2023 Feb 23.

Abstract

Polygenic risk scores (PRS) quantify the genetic liability to disease and are calculated using an individual's genotype profile and disease-specific genome-wide association study (GWAS) summary statistics. Type 1 (T1D) and type 2 (T2D) diabetes both are determined in part by genetic loci. Correctly differentiating between types of diabetes is crucial for accurate diagnosis and treatment. PRS have the potential to address possible misclassification of T1D and T2D. Here we evaluated PRS models for T1D and T2D in European genetic ancestry participants from the UK Biobank (UKB) and then in the Michigan Genomics Initiative (MGI). Specifically, we investigated the utility of T1D and T2D PRS to discriminate between T1D, T2D, and controls in unrelated UKB individuals of European ancestry. We derived PRS models using external non-UKB GWAS. The T1D PRS model with the best discrimination between T1D cases and controls (area under the receiver operator curve [AUC] = 0.805) also yielded the best discrimination of T1D from T2D cases in the UKB (AUC = 0.792) and separation in MGI (AUC = 0.686). In contrast, the best T2D model did not discriminate between T1D and T2D cases (AUC = 0.527). Our analysis suggests that a T1D PRS model based on independent single nucleotide polymorphisms may help differentiate between T1D, T2D, and controls in individuals of European genetic ancestry.

摘要

多基因风险评分 (PRS) 量化了疾病的遗传易感性,是通过个体的基因型谱和特定疾病的全基因组关联研究 (GWAS) 汇总统计数据计算得出的。1 型 (T1D) 和 2 型 (T2D) 糖尿病都部分由遗传位点决定。正确区分糖尿病类型对于准确诊断和治疗至关重要。PRS 有可能解决 T1D 和 T2D 分类错误的问题。在这里,我们在英国生物银行 (UKB) 的欧洲遗传背景参与者中评估了 T1D 和 T2D 的 PRS 模型,然后在密歇根基因组倡议 (MGI) 中进行了评估。具体来说,我们研究了 T1D 和 T2D PRS 在欧洲血统的 UKB 无关个体中区分 T1D、T2D 和对照的效用。我们使用外部非 UKB GWAS 来推导 PRS 模型。在 UKB 中,区分 T1D 病例和对照组的最佳 T1D PRS 模型 (接收者操作特征曲线下面积 [AUC] = 0.805) 也能最好地区分 T1D 与 T2D 病例 (AUC = 0.792) 并在 MGI 中分离 (AUC = 0.686)。相比之下,最佳的 T2D 模型不能区分 T1D 和 T2D 病例 (AUC = 0.527)。我们的分析表明,基于独立单核苷酸多态性的 T1D PRS 模型可能有助于区分欧洲遗传背景个体中的 T1D、T2D 和对照。

相似文献

1
Evaluation of polygenic risk scores to differentiate between type 1 and type 2 diabetes.
Genet Epidemiol. 2023 Jun;47(4):303-313. doi: 10.1002/gepi.22521. Epub 2023 Feb 23.
3
Genome-wide polygenic risk score for type 2 diabetes in Indian population.
Sci Rep. 2023 Jul 18;13(1):11568. doi: 10.1038/s41598-023-38768-5.
4
Utility of Polygenic Scores for Differentiating Diabetes Diagnosis Among Patients With Atypical Phenotypes of Diabetes.
J Clin Endocrinol Metab. 2023 Dec 21;109(1):107-113. doi: 10.1210/clinem/dgad456.
6
Ancestry effects on type 2 diabetes genetic risk inference in Hispanic/Latino populations.
BMC Med Genet. 2020 Jun 25;21(Suppl 2):132. doi: 10.1186/s12881-020-01068-0.
7
A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination Between Type 1 and Type 2 Diabetes in Young Adults.
Diabetes Care. 2016 Mar;39(3):337-44. doi: 10.2337/dc15-1111. Epub 2015 Nov 17.
8
Untangling the genetic link between type 1 and type 2 diabetes using functional genomics.
Sci Rep. 2021 Jul 6;11(1):13871. doi: 10.1038/s41598-021-93346-x.
9
Impact of the trans-ancestry polygenic risk score on type 2 diabetes risk, onset age and progression among population in Taiwan.
Am J Physiol Endocrinol Metab. 2024 May 1;326(5):E547-E554. doi: 10.1152/ajpendo.00252.2023. Epub 2024 Feb 16.

本文引用的文献

1
The Michigan Genomics Initiative: A biobank linking genotypes and electronic clinical records in Michigan Medicine patients.
Cell Genom. 2023 Jan 31;3(2):100257. doi: 10.1016/j.xgen.2023.100257. eCollection 2023 Feb 8.
2
Type 1 Diabetes and the HLA Region: Genetic Association Besides Classical HLA Class II Genes.
Front Genet. 2021 Jun 17;12:683946. doi: 10.3389/fgene.2021.683946. eCollection 2021.
3
From Basic Science to Clinical Application of Polygenic Risk Scores: A Primer.
JAMA Psychiatry. 2021 Jan 1;78(1):101-109. doi: 10.1001/jamapsychiatry.2020.3049.
4
The clinical consequences of heterogeneity within and between different diabetes types.
Diabetologia. 2020 Oct;63(10):2040-2048. doi: 10.1007/s00125-020-05211-7. Epub 2020 Sep 7.
5
Tutorial: a guide to performing polygenic risk score analyses.
Nat Protoc. 2020 Sep;15(9):2759-2772. doi: 10.1038/s41596-020-0353-1. Epub 2020 Jul 24.
7
Systematic Review of Polygenic Risk Scores for Type 1 and Type 2 Diabetes.
Int J Mol Sci. 2020 Mar 2;21(5):1703. doi: 10.3390/ijms21051703.
8
PRSice-2: Polygenic Risk Score software for biobank-scale data.
Gigascience. 2019 Jul 1;8(7). doi: 10.1093/gigascience/giz082.
9
Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood.
Cell. 2019 Apr 18;177(3):587-596.e9. doi: 10.1016/j.cell.2019.03.028.
10
Familial aggregation and heritability of type 1 diabetes mellitus and coaggregation of chronic diseases in affected families.
Clin Epidemiol. 2018 Oct 10;10:1447-1455. doi: 10.2147/CLEP.S172207. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验