Suppr超能文献

非靶向代谢组学分析电子烟使用者尿液中的化学物质特征。

Untargeted Metabolomics to Characterize the Urinary Chemical Landscape of E-Cigarette Users.

机构信息

Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States.

Department of Surgery, Urology Service, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.

出版信息

Chem Res Toxicol. 2023 Apr 17;36(4):630-642. doi: 10.1021/acs.chemrestox.2c00346. Epub 2023 Mar 13.

Abstract

The health and safety of using e-cigarette products (vaping) have been challenging to assess and further regulate due to their complexity. Inhaled e-cigarette aerosols contain chemicals with under-recognized toxicological profiles, which could influence endogenous processes once inhaled. We urgently need more understanding on the metabolic effects of e-cigarette exposure and how they compare to combustible cigarettes. To date, the metabolic landscape of inhaled e-cigarette aerosols, including chemicals originated from vaping and perturbed endogenous metabolites in vapers, is poorly characterized. To better understand the metabolic landscape and potential health consequences of vaping, we applied liquid chromatography-mass spectrometry (LC-MS) based nontargeted metabolomics to analyze compounds in the urine of vapers, cigarette smokers, and nonusers. Urine from vapers ( = 34), smokers ( = 38), and nonusers ( = 45) was collected for verified LC-HRMS nontargeted chemical analysis. The altered features (839, 396, and 426 when compared smoker and control, vaper and control, and smoker and vaper, respectively) among exposure groups were deciphered for their structural identities, chemical similarities, and biochemical relationships. Chemicals originating from e-cigarettes and altered endogenous metabolites were characterized. There were similar levels of nicotine biomarkers of exposure among vapers and smokers. Vapers had higher urinary levels of diethyl phthalate and flavoring agents (e.g., delta-decalactone). The metabolic profiles featured clusters of acylcarnitines and fatty acid derivatives. More consistent trends of elevated acylcarnitines and acylglycines in vapers were observed, which may suggest higher lipid peroxidation. Our approach in monitoring shifts of the urinary chemical landscape captured distinctive alterations resulting from vaping. Our results suggest similar nicotine metabolites in vapers and cigarette smokers. Acylcarnitines are biomarkers of inflammatory status and fatty acid oxidation, which were dysregulated in vapers. With higher lipid peroxidation, radical-forming flavoring, and higher level of specific nitrosamine, we observed a trend of elevated cancer-related biomarkers in vapers as well. Together, these data present a comprehensive profiling of urinary biochemicals that were dysregulated due to vaping.

摘要

电子烟产品( vaping)的健康和安全由于其复杂性而难以评估和进一步监管。吸入式电子烟气溶胶中含有毒性特征尚未被充分认识的化学物质,这些物质一旦被吸入,可能会影响内源性过程。我们迫切需要更多地了解电子烟暴露的代谢效应,以及它们与可燃香烟相比的情况。迄今为止,吸入式电子烟气溶胶的代谢特征,包括电子烟产生的化学物质和电子烟使用者体内受干扰的内源性代谢物,还没有得到很好的描述。为了更好地了解电子烟的代谢特征和潜在健康影响,我们应用基于液相色谱-质谱(LC-MS)的非靶向代谢组学来分析电子烟使用者、香烟吸烟者和非使用者尿液中的化合物。收集了电子烟使用者( = 34)、吸烟者( = 38)和非使用者( = 45)的尿液,以进行经过验证的 LC-HRMS 非靶向化学分析。比较吸烟者和对照组、电子烟使用者和对照组以及吸烟者和电子烟使用者三组之间的差异特征(分别为 839、396 和 426),以确定它们的结构同一性、化学相似性和生化关系。确定了源自电子烟的化学物质和受干扰的内源性代谢物的特征。电子烟使用者和吸烟者体内的尼古丁暴露生物标志物水平相似。电子烟使用者尿液中的邻苯二甲酸二乙酯和调味剂(例如,δ-癸内酯)水平较高。代谢谱的特征是酰基肉碱和脂肪酸衍生物的簇。在电子烟使用者中观察到酰基肉碱和酰基甘氨酸升高的趋势更为一致,这可能表明脂质过氧化作用更高。我们监测尿液化学特征变化的方法捕捉到了由电子烟引起的独特变化。我们的研究结果表明,电子烟使用者和香烟吸烟者体内的尼古丁代谢物相似。酰基肉碱是炎症状态和脂肪酸氧化的生物标志物,在电子烟使用者中受到了干扰。由于脂质过氧化作用更高、形成自由基的调味剂和特定亚硝胺水平更高,我们也观察到电子烟使用者体内与癌症相关的生物标志物升高的趋势。总的来说,这些数据提供了一个全面的电子烟引起的尿液生物化学物质失调的特征图谱。

相似文献

1
Untargeted Metabolomics to Characterize the Urinary Chemical Landscape of E-Cigarette Users.
Chem Res Toxicol. 2023 Apr 17;36(4):630-642. doi: 10.1021/acs.chemrestox.2c00346. Epub 2023 Mar 13.
2
Vaping Dose, Device Type, and E-Liquid Flavor are Determinants of DNA Damage in Electronic Cigarette Users.
Nicotine Tob Res. 2023 May 22;25(6):1145-1154. doi: 10.1093/ntr/ntad003.
3
Estimation of the dose of electronic cigarette chemicals deposited in human airways through passive vaping.
J Expo Sci Environ Epidemiol. 2021 Nov;31(6):1008-1016. doi: 10.1038/s41370-021-00362-0. Epub 2021 Jul 8.
4
What e-cigarette factors determine oral epithelial DNA damage in consumers?
Evid Based Dent. 2023 Dec;24(4):163-164. doi: 10.1038/s41432-023-00943-y. Epub 2023 Oct 12.
6
Vapers exhibit similar subjective nicotine dependence but lower nicotine reinforcing value compared to smokers.
Addict Behav. 2021 Apr;115:106737. doi: 10.1016/j.addbeh.2020.106737. Epub 2020 Nov 29.
7
Differential effects of tobacco cigarettes and electronic cigarettes on endothelial function in healthy young people.
Am J Physiol Heart Circ Physiol. 2020 Sep 1;319(3):H547-H556. doi: 10.1152/ajpheart.00307.2020. Epub 2020 Jul 31.
8
Biomarkers of exposure in urine of active smokers, non-smokers, and vapers.
Anal Bioanal Chem. 2023 Nov;415(27):6677-6688. doi: 10.1007/s00216-023-04943-w. Epub 2023 Sep 25.

引用本文的文献

1
Gastroesophageal disease risk and inhalational exposure a systematic review and meta-analysis.
Sci Rep. 2025 Jul 2;15(1):22581. doi: 10.1038/s41598-025-06620-7.
2
Effects of E-Cigarettes on the Lung and Systemic Metabolome in People with HIV.
Metabolites. 2024 Aug 6;14(8):434. doi: 10.3390/metabo14080434.
3
Gastroesophageal Disease and Environmental Exposure: A Systematic Review.
Res Sq. 2024 Jul 31:rs.3.rs-4650430. doi: 10.21203/rs.3.rs-4650430/v1.
6
The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice.
Toxics. 2023 Oct 1;11(10):833. doi: 10.3390/toxics11100833.
7
Biomarkers of exposure in urine of active smokers, non-smokers, and vapers.
Anal Bioanal Chem. 2023 Nov;415(27):6677-6688. doi: 10.1007/s00216-023-04943-w. Epub 2023 Sep 25.

本文引用的文献

1
Aroma Properties of Cocoa Fruit Pulp from Different Origins.
Molecules. 2021 Dec 15;26(24):7618. doi: 10.3390/molecules26247618.
3
Chemical analysis of fresh and aged Australian e-cigarette liquids.
Med J Aust. 2022 Jan 17;216(1):27-32. doi: 10.5694/mja2.51280. Epub 2021 Oct 6.
4
Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment.
Environ Pollut. 2021 Dec 15;291:118106. doi: 10.1016/j.envpol.2021.118106. Epub 2021 Sep 4.
5
RIFM fragrance ingredient safety assessment, δ-decalactone, CAS Registry Number 705-86-2.
Food Chem Toxicol. 2021 Jul;153 Suppl 1:112142. doi: 10.1016/j.fct.2021.112142. Epub 2021 Mar 25.
6
Nicotine delivery and cigarette equivalents from vaping a JUULpod.
Tob Control. 2022 Aug;31(e1):e88-e93. doi: 10.1136/tobaccocontrol-2020-056367. Epub 2021 Mar 24.
7
A review of constituents identified in e-cigarette liquids and aerosols.
Tob Prev Cessat. 2021 Feb 10;7:10. doi: 10.18332/tpc/131111. eCollection 2021.
9
Vaping and lung cancer - A review of current data and recommendations.
Lung Cancer. 2021 Mar;153:11-20. doi: 10.1016/j.lungcan.2020.12.030. Epub 2021 Jan 2.
10
Hazards of diethyl phthalate (DEP) exposure: A systematic review of animal toxicology studies.
Environ Int. 2020 Dec;145:105848. doi: 10.1016/j.envint.2020.105848. Epub 2020 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验