Laboratory of Bioinformatics and Proteomics, Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia.
Faculty of Applied math, MIREA - Russian Technological University, Moscow, 119454, Russia.
Mol Inform. 2024 May;43(5):e202200181. doi: 10.1002/minf.202200181. Epub 2023 Apr 7.
Antibiotic-resistant strains are an emerging threat to public health. The usage of antimicrobial peptides (AMPs) is one of the promising approaches to solve this problem. For the development of new AMPs, it is necessary to have reliable prediction methods. Recently, deep learning approaches have been used to predict AMP. In this paper, we want to compare simple and complex methods for these purposes. We used the BERT transformer to create sequence embeddings and the multilayer perceptron (MLP) and light attention (LA) approaches for classification. One of them reached about 80 % accuracy and specificity in benchmark testing, which is on par with the best available methods. For comparison, we proposed a simple method using only the amino acid composition of proteins or peptides. This method has shown good results, at the level of the best methods. We have prepared a special server for predicting the ability of AMPs by amino acid composition: http://bioproteom.protres.ru/antimicrob/.
抗生素耐药菌株对公共健康构成了新的威胁。抗菌肽 (AMPs) 的使用是解决这个问题的有前途的方法之一。为了开发新的 AMPs,有必要拥有可靠的预测方法。最近,深度学习方法已被用于预测 AMP。在本文中,我们希望比较这些目的的简单和复杂方法。我们使用 BERT 转换器创建序列嵌入,并使用多层感知机 (MLP) 和轻注意 (LA) 方法进行分类。其中一种在基准测试中达到了约 80%的准确率和特异性,与现有的最佳方法相当。为了进行比较,我们提出了一种仅使用蛋白质或肽的氨基酸组成的简单方法。该方法的结果与最佳方法相当。我们已经准备了一个专门的服务器来预测 AMP 按氨基酸组成的能力:http://bioproteom.protres.ru/antimicrob/。