School of Engineering and Material Science, Queen Mary University of London, London, E1 4NS, United Kingdom.
Biomech Model Mechanobiol. 2023 Aug;22(4):1209-1220. doi: 10.1007/s10237-023-01712-7. Epub 2023 Mar 24.
Characterising the mechanical properties of flowing microcapsules is important from both fundamental and applied points of view. In the present study, we develop a novel multilayer perceptron (MLP)-based machine learning (ML) approach, for real-time simultaneous predictions of the membrane mechanical law type, shear and area-dilatation moduli of microcapsules, from their camera-recorded steady profiles in tube flow. By MLP, we mean a neural network where many perceptrons are organised into layers. A perceptron is a basic element that conducts input-output mapping operation. We test the performance of the present approach using both simulation and experimental data. We find that with a reasonably high prediction accuracy, our method can reach an unprecedented low prediction latency of less than 1 millisecond on a personal computer. That is the overall computational time, without using parallel computing, from a single experimental image to multiple capsule mechanical parameters. It is faster than a recently proposed convolutional neural network-based approach by two orders of magnitude, for it only deals with the one-dimensional capsule boundary instead of the entire two-dimensional capsule image. Our new approach may serve as the foundation of a promising tool for real-time mechanical characterisation and online active sorting of deformable microcapsules and biological cells in microfluidic devices.
从基础和应用的角度来看,描述流动微胶囊的力学性能是很重要的。在本研究中,我们开发了一种新的基于多层感知器 (MLP) 的机器学习 (ML) 方法,用于从管流中微胶囊的相机记录的稳态轮廓实时同时预测其膜力学律类型、剪切和面积扩张模量。通过 MLP,我们指的是一种神经网络,其中许多感知器被组织成层。感知器是执行输入-输出映射操作的基本元素。我们使用模拟和实验数据来测试本方法的性能。我们发现,在具有相当高的预测精度的情况下,我们的方法可以在个人计算机上达到前所未有的低预测延迟,低于 1 毫秒。这是从单个实验图像到多个胶囊机械参数的整体计算时间,而无需使用并行计算。与最近提出的基于卷积神经网络的方法相比,它快了两个数量级,因为它只处理一维胶囊边界,而不是整个二维胶囊图像。我们的新方法可以作为一种有前途的工具的基础,用于实时机械特性表征和微流控装置中变形微胶囊和生物细胞的在线主动分选。