Laboratoire écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Avenue de l'Agrobiopole, 31326, Toulouse, France; Géosciences Environnement Toulouse, CNRS UMR5563 - IRD UR 234, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400, Toulouse, France.
Laboratoire écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Avenue de l'Agrobiopole, 31326, Toulouse, France.
Chemosphere. 2023 Jul;328:138487. doi: 10.1016/j.chemosphere.2023.138487. Epub 2023 Mar 31.
Ombrotrophic peatlands are fed uniquely by atmospheric inputs and therefore have much potential as temporal archives of atmospheric microplastic (MP) deposition, yet the recovery and detection of MP within an almost purely organic matrix is challenging. This study presents a novel peat digestion protocol using sodium hypochlorite (NaClO) as a reagent for biogenic matrix removal. NaClO is more efficient than hydrogen peroxide (HO). By using purged air-assisted digestion, NaClO (50 vol%) reached 99% matrix digestion compared with 28% and 75% by HO (30 vol%) and Fenton's reagent, respectively. At a concentration of 50 vol% NaClO did however chemically disintegrate small amounts (<10 mass %) of polyethylene terephthalate (PET) and polyamide (PA) fragments in the millimeter size range. Observation of PA6 in natural peat samples, while not found in the procedural blanks, questions whether PA is fully disintegrated by NaClO. The protocol was applied to three commercial sphagnum moss test samples, in which MP particles in the range of 0.8-65.4 μm were detected by Raman microspectroscopy. The MP mass% was determined at 0.012% corresponding to 129 thousand MP particles/g, of which 62% were smaller than 5 μm and 80% were smaller than 10 μm, yet were accountable for only 0.4% (500 ng) and 3.2% (4 μg) of the total mass of MP, respectively. These findings underline the importance of the identification of particles Ø < 5 μm when investigating atmospheric MP deposition. The MP counts were corrected for MP recovery loss and procedural blank contamination. MP spike recovery following the full protocol was estimated at 60%. The protocol offers an efficient way of isolating and pre-concentrating most aerosol sized MPs in large quantities of refractory vegetal matrices and enables the automated μRaman scanning of thousands of particles at a spatial resolution on the order of 1 μm.
寡营养泥炭地仅由大气输入物供养,因此非常适合作为大气微塑料(MP)沉积的时间档案,但从几乎纯有机基质中回收和检测 MP 具有挑战性。本研究提出了一种使用次氯酸钠(NaClO)作为生物基质去除试剂的新型泥炭消化方案。与过氧化氢(HO)(30 体积%)和芬顿试剂分别达到 28%和 75%的基质消化率相比,NaClO(50 体积%)更有效。然而,在 50 体积% NaClO 浓度下,仍会化学分解毫米级范围内少量(<10 质量%)聚对苯二甲酸乙二醇酯(PET)和聚酰胺(PA)碎片。在天然泥炭样品中观察到 PA6,但在程序空白中未发现,这使得人们质疑 PA 是否被 NaClO 完全分解。该方案应用于三个商业的苔藓测试样品中,通过拉曼微光谱法检测到 0.8-65.4 μm 范围内的 MP 颗粒。MP 质量% 为 0.012%,对应于 129 万个 MP 颗粒/g,其中 62%小于 5 μm,80%小于 10 μm,但仅占 MP 总质量的 0.4%(500ng)和 3.2%(4μg),分别。这些发现强调了当研究大气 MP 沉积时,识别<5μm 粒径颗粒的重要性。对 MP 计数进行了校正,以消除 MP 回收损失和程序空白污染。按照完整方案进行的 MP 加标回收率估计为 60%。该方案提供了一种有效的方法,可在大量难处理的植物基质中分离和预浓缩大多数气溶胶尺寸的 MPs,并实现了数千个颗粒在 1μm 量级的空间分辨率下的自动 μRaman 扫描。