Suppr超能文献

基于双聚类分析的替代机制表征管道(PCAM)用于研究结直肠癌异质性。

Pipeline for characterizing alternative mechanisms (PCAM) based on bi-clustering to study colorectal cancer heterogeneity.

作者信息

Cao Sha, Chang Wennan, Wan Changlin, Lu Xiaoyu, Dang Pengtao, Zhou Xinyu, Zhu Haiqi, Chen Jian, Li Bo, Zang Yong, Wang Yijie, Zhang Chi

机构信息

Center for Computational Biology and Bioinformatics, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.

Department of Biostatistics and Health Data Science, Indiana University, School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Comput Struct Biotechnol J. 2023 Mar 17;21:2160-2171. doi: 10.1016/j.csbj.2023.03.028. eCollection 2023.

Abstract

The cells of colorectal cancer (CRC) in their microenvironment experience constant stress, leading to dysregulated activity in the tumor niche. As a result, cancer cells acquire alternative pathways in response to the changing microenvironment, posing significant challenges for the design of effective cancer treatment strategies. While computational studies on high-throughput omics data have advanced our understanding of CRC subtypes, characterizing the heterogeneity of this disease remains remarkably complex. Here, we present a novel computational Pipeline for Characterizing Alternative Mechanisms (PCAM) based on biclustering to gain a more detailed understanding of cancer heterogeneity. Our application of PCAM to large-scale CRC transcriptomics datasets suggests that PCAM can generate a wealth of information leading to new biological understanding and predictive markers of alternative mechanisms. Our key findings include: 1) A comprehensive collection of alternative pathways in CRC, associated with biological and clinical factors. 2) Full annotation of detected alternative mechanisms, including their enrichment in known pathways and associations with various clinical outcomes. 3) A mechanistic relationship between known clinical subtypes and outcomes on a consensus map, visualized by the presence of alternative mechanisms. 4) Several potential novel alternative drug resistance mechanisms for Oxaliplatin, 5-Fluorouracil, and FOLFOX, some of which were validated on independent datasets. We believe that gaining a deeper understanding of alternative mechanisms is a critical step towards characterizing the heterogeneity of CRC. The hypotheses generated by PCAM, along with the comprehensive collection of biologically and clinically associated alternative pathways in CRC, could provide valuable insights into the underlying mechanisms driving cancer progression and drug resistance, which could aid in the development of more effective cancer therapies and guide experimental design towards more targeted and personalized treatment strategies. The computational pipeline of PCAM is available in GitHub (https://github.com/changwn/BC-CRC).

摘要

结直肠癌(CRC)细胞在其微环境中不断受到压力,导致肿瘤微环境中的活性失调。因此,癌细胞会获得应对不断变化的微环境的替代途径,这给有效癌症治疗策略的设计带来了重大挑战。虽然对高通量组学数据的计算研究增进了我们对CRC亚型的理解,但表征这种疾病的异质性仍然非常复杂。在这里,我们提出了一种基于双聚类的新型计算管道——用于表征替代机制(PCAM),以更详细地了解癌症异质性。我们将PCAM应用于大规模CRC转录组学数据集表明,PCAM可以生成大量信息,从而带来对替代机制的新生物学理解和预测标记。我们的主要发现包括:1)CRC中与生物学和临床因素相关的替代途径的全面集合。2)对检测到的替代机制的完整注释,包括它们在已知途径中的富集以及与各种临床结果的关联。3)通过替代机制的存在在共识图上可视化已知临床亚型与结果之间的机制关系。4)奥沙利铂、5-氟尿嘧啶和FOLFOX的几种潜在新型替代耐药机制,其中一些在独立数据集上得到了验证。我们认为,更深入地了解替代机制是表征CRC异质性的关键一步。PCAM产生的假设,以及CRC中生物学和临床相关替代途径的全面集合,可以为驱动癌症进展和耐药性的潜在机制提供有价值的见解,这有助于开发更有效的癌症治疗方法,并指导实验设计朝着更有针对性和个性化的治疗策略发展。PCAM的计算管道可在GitHub上获取(https://github.com/changwn/BC-CRC)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4746/10066523/56943d27f8f8/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验