National Biofilms Innovation Centre, Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Centre for Analytical Bioscience, Advanced Materials and Healthcare Technology Division, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
Microbiology (Reading). 2023 Apr;169(4). doi: 10.1099/mic.0.001316.
In , quorum sensing (QS) depends on an interconnected regulatory hierarchy involving the Las, Rhl and Pq systems, which are collectively responsible for the co-ordinated synthesis of a diverse repertoire of -acylhomoserine lactones (AHLs) and 2-alkyl-4-quinolones (AQs). Apparent population density-dependent phenomena such as QS may, however, be due to growth rate and/or nutrient exhaustion in batch culture. Using continuous culture, we show that growth rate and population density independently modulate the accumulation of AHLs and AQs such that the highest concentrations are observed at a slow growth rate and high population density. Carbon source (notably succinate), nutrient limitation (C, N, Fe, Mg) or growth at 25 °C generally reduces AHL and AQ levels, except for P and S limitation, which result in substantially higher concentrations of AQs, particularly AQ -oxides, despite the lower population densities achieved. Principal component analysis indicates that ~26 % variation is due to nutrient limitation and a further 30 % is due to growth rate. The formation of -(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) turnover products such as the ring opened form and tetramic acid varies with the limiting nutrient limitation and anaerobiosis. Differential ratios of -butanoyl-homoserine lactone (C4-HSL), 3OC12-HSL and the AQs as a function of growth environment are clearly apparent. Inactivation of QS by mutation of three key genes required for QS signal synthesis (, and ) substantially increases the concentrations of key substrates from the activated methyl cycle and aromatic amino acid biosynthesis, as well as ATP levels, highlighting the energetic drain that AHL and AQ synthesis and hence QS impose on .
在 ,群体感应 (QS) 依赖于一个相互关联的调节层次结构,涉及 Las、Rhl 和 Pq 系统,它们共同负责协调合成各种 -酰基高丝氨酸内酯 (AHLs) 和 2-烷基-4-喹诺酮 (AQs)。然而,像 QS 这样的明显的种群密度依赖性现象可能是由于分批培养中的生长速率和/或营养耗尽所致。使用连续培养,我们表明生长速率和种群密度独立调节 AHLs 和 AQs 的积累,使得在低生长速率和高种群密度下观察到最高浓度。碳源(特别是琥珀酸盐)、营养限制(C、N、Fe、Mg)或在 25°C 下生长通常会降低 AHL 和 AQ 水平,除了 P 和 S 限制,这会导致 AQs,特别是 AQ -氧化物的浓度显著升高,尽管达到的种群密度较低。主成分分析表明,约 26%的变化归因于营养限制,另有 30%归因于生长速率。-(3-氧代十二酰基)-l-高丝氨酸内酯 (3OC12-HSL) 转化产物的形成,如开环形式和四羧酸,随限制营养限制和厌氧条件而变化。与生长环境相关的 -(3-氧代十二酰基)-l-高丝氨酸内酯 (3OC12-HSL) 和 AQs 的不同比例差异明显。通过突变 QS 信号合成所需的三个关键基因 (, 和 ) 使 QS 失活,大大增加了激活甲基循环和芳香族氨基酸生物合成的关键底物以及 ATP 水平的浓度,这凸显了 AHL 和 AQ 合成以及因此 QS 对 的能量消耗。