Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
Doctoral School of Pathological Sciences, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary.
Acta Pharmacol Sin. 2023 Sep;44(9):1879-1889. doi: 10.1038/s41401-023-01079-6. Epub 2023 Apr 13.
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
免疫检查点抑制剂在多种肿瘤类型的治疗中显示出有前景的效果。生物标志物是用于选择接受全身性抗癌治疗的患者的生物指标,但只有少数临床有用的标志物,如 PD-L1 表达和肿瘤突变负担,可用于预测免疫治疗反应。在这项研究中,我们建立了一个包含基因表达和临床数据的数据库,以确定对抗 PD-1、抗 PD-L1 和抗 CTLA-4 免疫疗法反应的生物标志物。进行了 GEO 筛选,以确定无论癌症类型如何,同时具有临床反应和转录组数据的数据集。筛选仅限于涉及施用抗 PD-1(纳武单抗、派姆单抗)、抗 PD-L1(阿替利珠单抗、度伐鲁单抗)或抗 CTLA-4(伊匹单抗)药物的研究。对所有基因进行了接收者操作特征(ROC)分析和曼-惠特尼检验,以确定与治疗反应相关的特征。该数据库包含了来自 19 个数据集的 1434 个肿瘤组织样本,涉及食管、胃、头颈部、肺和膀胱癌,以及黑色素瘤。与抗 PD-1 耐药性相关的最强的可药物治疗的候选基因是 SPIN1(AUC=0.682,P=9.1E-12)、SRC(AUC=0.667,P=5.9E-10)、SETD7(AUC=0.663,P=1.0E-09)、FGFR3(AUC=0.657,P=3.7E-09)、YAP1(AUC=0.655,P=6.0E-09)、TEAD3(AUC=0.649,P=4.1E-08)和 BCL2(AUC=0.634,P=9.7E-08)。在抗 CTLA-4 治疗队列中,BLCAP(AUC=0.735,P=2.1E-06)是最有前途的候选基因。在抗 PD-L1 队列中,没有发现有治疗意义的候选基因与预后相关。在抗 PD-1 组中,我们能够证实错配修复基因 MLH1 和 MSH6 与生存之间存在显著相关性。建立了一个用于进一步分析和验证新的生物标志物候选物的网络平台,并可在 https://www.rocplot.com/immune 上访问。总之,建立了一个数据库和一个网络平台,用于在大量实体肿瘤样本中研究免疫治疗反应的生物标志物。我们的结果有助于确定新的有资格接受免疫治疗的患者群体。