Suppr超能文献

基因组编辑技术在鱼类中的应用。

The application of genome editing technology in fish.

作者信息

Lu Jianguo, Fang Wenyu, Huang Junrou, Li Shizhu

机构信息

School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082 China.

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080 China.

出版信息

Mar Life Sci Technol. 2021 May 27;3(3):326-346. doi: 10.1007/s42995-021-00091-1. eCollection 2021 Aug.

Abstract

The advent and development of genome editing technology has opened up the possibility of directly targeting and modifying genomic sequences in the field of life sciences with rapid developments occurring in the last decade. As a powerful tool to decipher genome data at the molecular biology level, genome editing technology has made important contributions to elucidating many biological problems. Currently, the three most widely used genome editing technologies include: zinc finger nucleases (ZFN), transcription activator like effector nucleases (TALEN), and clustered regularly interspaced short palindromic repeats (CRISPR). Researchers are still striving to create simpler, more efficient, and accurate techniques, such as engineered base editors and new CRISPR/Cas systems, to improve editing efficiency and reduce off-target rate, as well as a near-PAMless SpCas9 variants to expand the scope of genome editing. As one of the important animal protein sources, fish has significant economic value in aquaculture. In addition, fish is indispensable for research as it serves as the evolutionary link between invertebrates and higher vertebrates. Consequently, genome editing technologies were applied extensively in various fish species for basic functional studies as well as applied research in aquaculture. In this review, we focus on the application of genome editing technologies in fish species detailing growth, gender, and pigmentation traits. In addition, we have focused on the construction of a zebrafish () disease model and high-throughput screening of functional genes. Finally, we provide some of the future perspectives of this technology.

摘要

在过去十年中,随着基因组编辑技术的出现和发展,生命科学领域直接靶向和修饰基因组序列成为可能。作为在分子生物学水平上解析基因组数据的强大工具,基因组编辑技术为阐明许多生物学问题做出了重要贡献。目前,三种应用最广泛的基因组编辑技术包括:锌指核酸酶(ZFN)、转录激活因子样效应物核酸酶(TALEN)和成簇规律间隔短回文重复序列(CRISPR)。研究人员仍在努力创造更简单、更高效、更准确的技术,如工程化碱基编辑器和新型CRISPR/Cas系统,以提高编辑效率并降低脱靶率,以及近乎无PAM的SpCas9变体以扩大基因组编辑范围。鱼类作为重要的动物蛋白来源之一,在水产养殖中具有重要的经济价值。此外,鱼类作为无脊椎动物和高等脊椎动物之间的进化纽带,在研究中不可或缺。因此,基因组编辑技术被广泛应用于各种鱼类的基础功能研究以及水产养殖应用研究。在这篇综述中,我们重点关注基因组编辑技术在鱼类中的应用,详细介绍生长、性别和色素沉着性状。此外,我们还关注斑马鱼疾病模型的构建和功能基因的高通量筛选。最后,我们提供了这项技术的一些未来展望。

相似文献

1
The application of genome editing technology in fish.
Mar Life Sci Technol. 2021 May 27;3(3):326-346. doi: 10.1007/s42995-021-00091-1. eCollection 2021 Aug.
2
Genome editing in fishes and their applications.
Gen Comp Endocrinol. 2018 Feb 1;257:3-12. doi: 10.1016/j.ygcen.2017.09.011. Epub 2017 Sep 14.
3
Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
Int J Mol Sci. 2016 May 13;17(5):727. doi: 10.3390/ijms17050727.
4
[CRISPR/Cas9 technology in disease research and therapy: a review].
Sheng Wu Gong Cheng Xue Bao. 2021 Apr 25;37(4):1205-1228. doi: 10.13345/j.cjb.200401.
5
Therapeutic Application of Genome Editing Technologies in Viral Diseases.
Int J Mol Sci. 2022 May 12;23(10):5399. doi: 10.3390/ijms23105399.
6
Application and development of genome editing technologies to the Solanaceae plants.
Plant Physiol Biochem. 2018 Oct;131:37-46. doi: 10.1016/j.plaphy.2018.02.019. Epub 2018 Mar 2.
7
Versatile and multifaceted CRISPR/Cas gene editing tool for plant research.
Semin Cell Dev Biol. 2019 Dec;96:107-114. doi: 10.1016/j.semcdb.2019.04.012. Epub 2019 Apr 24.
8
Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals.
Vet Res Commun. 2023 Jan;47(1):1-16. doi: 10.1007/s11259-022-09967-8. Epub 2022 Jul 4.

引用本文的文献

1
Base editors in zebrafish: a new era for functional genomics and disease modeling.
Front Genome Ed. 2025 May 21;7:1598887. doi: 10.3389/fgeed.2025.1598887. eCollection 2025.
2
Role of multi-omics in aquaculture genetics and breeding: current status and future perspective.
Sci China Life Sci. 2025 May 28. doi: 10.1007/s11427-024-2828-8.
3
Decoding the fish genome opens a new era in important trait research and molecular breeding in China.
Sci China Life Sci. 2024 Oct;67(10):2064-2083. doi: 10.1007/s11427-023-2670-5. Epub 2024 Aug 12.
4
Optimizing reproductive performance in pangasius catfish broodstock: A review of dietary and molecular strategies.
Vet Anim Sci. 2024 Jun 16;25:100375. doi: 10.1016/j.vas.2024.100375. eCollection 2024 Sep.
6
Zebrafish ApoB-Containing Lipoprotein Metabolism: A Closer Look.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1053-1064. doi: 10.1161/ATVBAHA.123.318287. Epub 2024 Mar 14.
7
Genome-Wide Analysis Identifies Candidate Genes Encoding Beak Color of Duck.
Genes (Basel). 2022 Jul 18;13(7):1271. doi: 10.3390/genes13071271.

本文引用的文献

1
Androgen signaling regulates the transcription of anti-Müllerian hormone via synergy with SRY-related protein SOX9A.
Sci Bull (Beijing). 2017 Feb 15;62(3):197-203. doi: 10.1016/j.scib.2017.01.007. Epub 2017 Jan 10.
2
Loss of stat3 function leads to spine malformation and immune disorder in zebrafish.
Sci Bull (Beijing). 2017 Feb 15;62(3):185-196. doi: 10.1016/j.scib.2017.01.008. Epub 2017 Jan 10.
3
A novel PDZ domain-containing gene is essential for male sex differentiation and maintenance in yellow catfish (Pelteobagrus fulvidraco).
Sci Bull (Beijing). 2018 Nov 15;63(21):1420-1430. doi: 10.1016/j.scib.2018.08.012. Epub 2018 Aug 31.
4
Zebrafish cyp17a1 knockout reveals that androgen-mediated signaling is important for male brain sex differentiation.
Gen Comp Endocrinol. 2020 Sep 1;295:113490. doi: 10.1016/j.ygcen.2020.113490. Epub 2020 Apr 10.
6
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants.
Science. 2020 Apr 17;368(6488):290-296. doi: 10.1126/science.aba8853. Epub 2020 Mar 26.
7
Genome Editing in Zebrafish Using High-Fidelity Cas9 Nucleases: Choosing the Right Nuclease for the Task.
Methods Mol Biol. 2020;2115:385-405. doi: 10.1007/978-1-0716-0290-4_21.
9
Regulation of spermatogenesis and reproductive capacity by Igf3 in tilapia.
Cell Mol Life Sci. 2020 Dec;77(23):4921-4938. doi: 10.1007/s00018-019-03439-0. Epub 2020 Jan 18.
10
Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants.
Nat Rev Microbiol. 2020 Feb;18(2):67-83. doi: 10.1038/s41579-019-0299-x. Epub 2019 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验