Suppr超能文献

CRISPR-Cas 系统的进化分类:Class 2 及其衍生变体的爆发。

Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants.

机构信息

National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA.

Bioinformatics group, Department of Computer Science, University of Freiberg, Freiberg, Germany.

出版信息

Nat Rev Microbiol. 2020 Feb;18(2):67-83. doi: 10.1038/s41579-019-0299-x. Epub 2019 Dec 19.

Abstract

The number and diversity of known CRISPR-Cas systems have substantially increased in recent years. Here, we provide an updated evolutionary classification of CRISPR-Cas systems and cas genes, with an emphasis on the major developments that have occurred since the publication of the latest classification, in 2015. The new classification includes 2 classes, 6 types and 33 subtypes, compared with 5 types and 16 subtypes in 2015. A key development is the ongoing discovery of multiple, novel class 2 CRISPR-Cas systems, which now include 3 types and 17 subtypes. A second major novelty is the discovery of numerous derived CRISPR-Cas variants, often associated with mobile genetic elements that lack the nucleases required for interference. Some of these variants are involved in RNA-guided transposition, whereas others are predicted to perform functions distinct from adaptive immunity that remain to be characterized experimentally. The third highlight is the discovery of numerous families of ancillary CRISPR-linked genes, often implicated in signal transduction. Together, these findings substantially clarify the functional diversity and evolutionary history of CRISPR-Cas.

摘要

近年来,已知的 CRISPR-Cas 系统的数量和多样性有了显著的增加。在这里,我们提供了一个 CRISPR-Cas 系统和 cas 基因的更新的进化分类,重点介绍了自 2015 年最新分类发布以来发生的主要进展。与 2015 年的 5 种类型和 16 种亚型相比,新的分类包括 2 个纲、6 个型和 33 个亚型。一个关键的发展是正在发现多个新的 2 类 CRISPR-Cas 系统,现在包括 3 个型和 17 个亚型。第二个主要的新发现是大量衍生的 CRISPR-Cas 变体的发现,这些变体通常与缺乏干扰所需的核酸酶的移动遗传元件有关。其中一些变体参与 RNA 引导的转座,而另一些则被预测具有不同于适应性免疫的功能,有待实验来表征。第三个亮点是发现了许多辅助性的 CRISPR 相关基因家族,这些基因通常与信号转导有关。这些发现一起极大地阐明了 CRISPR-Cas 的功能多样性和进化历史。

相似文献

1
Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants.
Nat Rev Microbiol. 2020 Feb;18(2):67-83. doi: 10.1038/s41579-019-0299-x. Epub 2019 Dec 19.
2
An updated evolutionary classification of CRISPR-Cas systems.
Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28.
3
CRISPR-Cas systems: beyond adaptive immunity.
Nat Rev Microbiol. 2014 May;12(5):317-26. doi: 10.1038/nrmicro3241. Epub 2014 Apr 7.
4
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
5
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
6
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Genome Biol Evol. 2017 Oct 1;9(10):2812-2825. doi: 10.1093/gbe/evx192.
7
Origins and evolution of CRISPR-Cas systems.
Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20180087. doi: 10.1098/rstb.2018.0087.
8
Regulation of CRISPR-Cas adaptive immune systems.
Curr Opin Microbiol. 2017 Jun;37:1-7. doi: 10.1016/j.mib.2017.02.004. Epub 2017 Mar 27.
9
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147.
10
Phylogenomics of Cas4 family nucleases.
BMC Evol Biol. 2017 Nov 28;17(1):232. doi: 10.1186/s12862-017-1081-1.

引用本文的文献

1
Phage susceptibility to a minimal, modular synthetic CRISPR-Cas system in is nutrient dependent.
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240473. doi: 10.1098/rstb.2024.0473.
2
Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application.
Exploration (Beijing). 2025 Apr 3;5(4):e20240045. doi: 10.1002/EXP.20240045. eCollection 2025 Aug.
3
CRISPR in Neurodegenerative Diseases Treatment: An Alternative Approach to Current Therapies.
Genes (Basel). 2025 Jul 22;16(8):850. doi: 10.3390/genes16080850.
4
CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield.
Int J Mol Sci. 2025 Aug 16;26(16):7925. doi: 10.3390/ijms26167925.
5
Exploring the eco-evolutionary role of plasmids and defense systems in '' extreme acidophile.
Front Microbiol. 2025 Aug 11;16:1610279. doi: 10.3389/fmicb.2025.1610279. eCollection 2025.
6
Discovery of CRISPR-Cas12a clades using a large language model.
Nat Commun. 2025 Aug 23;16(1):7877. doi: 10.1038/s41467-025-63160-4.
9
Deciphering the RNA-based regulation mechanism of the phage-encoded AbiF system in Clostridioides difficile.
PLoS Genet. 2025 Aug 19;21(8):e1011831. doi: 10.1371/journal.pgen.1011831. eCollection 2025 Aug.
10
Metagenomic CRISPR Array Analysis Tool: a novel graph-based approach to finding CRISPR arrays in metagenomic datasets.
Microlife. 2025 Jul 17;6:uqaf016. doi: 10.1093/femsml/uqaf016. eCollection 2025.

本文引用的文献

1
Identification of a Type IV-A CRISPR-Cas System Located Exclusively on Plasmids in .
Front Microbiol. 2020 Aug 12;11:1937. doi: 10.3389/fmicb.2020.01937. eCollection 2020.
2
3
Clades of huge phages from across Earth's ecosystems.
Nature. 2020 Feb;578(7795):425-431. doi: 10.1038/s41586-020-2007-4. Epub 2020 Feb 12.
4
Systematic prediction of functionally linked genes in bacterial and archaeal genomes.
Nat Protoc. 2019 Oct;14(10):3013-3031. doi: 10.1038/s41596-019-0211-1. Epub 2019 Sep 13.
5
Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration.
Nature. 2019 Jul;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub 2019 Jun 12.
6
RNA-guided DNA insertion with CRISPR-associated transposases.
Science. 2019 Jul 5;365(6448):48-53. doi: 10.1126/science.aax9181. Epub 2019 Jun 6.
7
CRISPR-Cas in mobile genetic elements: counter-defence and beyond.
Nat Rev Microbiol. 2019 Aug;17(8):513-525. doi: 10.1038/s41579-019-0204-7.
8
The next generation of CRISPR-Cas technologies and applications.
Nat Rev Mol Cell Biol. 2019 Aug;20(8):490-507. doi: 10.1038/s41580-019-0131-5.
9
Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage.
Nature. 2019 Jun;570(7760):241-245. doi: 10.1038/s41586-019-1257-5. Epub 2019 May 29.
10
Classification and Nomenclature of CRISPR-Cas Systems: Where from Here?
CRISPR J. 2018 Oct;1(5):325-336. doi: 10.1089/crispr.2018.0033.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验