Suppr超能文献

CRISPR-Cas 系统的多样性、分类和进化。

Diversity, classification and evolution of CRISPR-Cas systems.

机构信息

National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.

National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.

出版信息

Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.

Abstract

The bacterial and archaeal CRISPR-Cas systems of adaptive immunity show remarkable diversity of protein composition, effector complex structure, genome locus architecture and mechanisms of adaptation, pre-CRISPR (cr)RNA processing and interference. The CRISPR-Cas systems belong to two classes, with multi-subunit effector complexes in Class 1 and single-protein effector modules in Class 2. Concerted genomic and experimental efforts on comprehensive characterization of Class 2 CRISPR-Cas systems led to the identification of two new types and several subtypes. The newly characterized type VI systems are the first among the CRISPR-Cas variants to exclusively target RNA. Unexpectedly, in some of the class 2 systems, the effector protein is additionally responsible for the pre-crRNA processing. Comparative analysis of the effector complexes indicates that Class 2 systems evolved from mobile genetic elements on multiple, independent occasions.

摘要

细菌和古菌的 CRISPR-Cas 系统具有适应性免疫的显著多样性,表现在蛋白组成、效应复合物结构、基因组位置结构和适应机制、前 CRISPR(cr)RNA 加工和干扰等方面。CRISPR-Cas 系统属于两类,一类是多亚基效应复合物的 1 类,另一类是单蛋白效应模块的 2 类。对 2 类 CRISPR-Cas 系统的全面特征的综合基因组和实验努力导致了两种新型和几种亚型的鉴定。新表征的 VI 型系统是 CRISPR-Cas 变体中第一个专门靶向 RNA 的系统。出人意料的是,在一些 2 类系统中,效应蛋白还负责前 crRNA 加工。效应复合物的比较分析表明,2 类系统是从多个独立的移动遗传元件进化而来的。

相似文献

1
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
2
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Genome Biol Evol. 2017 Oct 1;9(10):2812-2825. doi: 10.1093/gbe/evx192.
3
Origins and evolution of CRISPR-Cas systems.
Philos Trans R Soc Lond B Biol Sci. 2019 May 13;374(1772):20180087. doi: 10.1098/rstb.2018.0087.
4
Classification of CRISPR/Cas system and its application in tomato breeding.
Theor Appl Genet. 2022 Feb;135(2):367-387. doi: 10.1007/s00122-021-03984-y. Epub 2022 Jan 1.
5
Approaches to study CRISPR RNA biogenesis and the key players involved.
Methods. 2020 Feb 1;172:12-26. doi: 10.1016/j.ymeth.2019.07.015. Epub 2019 Jul 17.
6
Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants.
Nat Rev Microbiol. 2020 Feb;18(2):67-83. doi: 10.1038/s41579-019-0299-x. Epub 2019 Dec 19.
7
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
8
Phylogenomics of Cas4 family nucleases.
BMC Evol Biol. 2017 Nov 28;17(1):232. doi: 10.1186/s12862-017-1081-1.
9
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems.
Mol Cell. 2015 Nov 5;60(3):385-97. doi: 10.1016/j.molcel.2015.10.008. Epub 2015 Oct 22.
10
An updated evolutionary classification of CRISPR-Cas systems.
Nat Rev Microbiol. 2015 Nov;13(11):722-36. doi: 10.1038/nrmicro3569. Epub 2015 Sep 28.

引用本文的文献

1
CRISPR/Cas-Mediated Optimization of Soybean Shoot Architecture for Enhanced Yield.
Int J Mol Sci. 2025 Aug 16;26(16):7925. doi: 10.3390/ijms26167925.
2
A light-controlled one-tube detection platform combining CRISPR-Cas12a and RPA: an innovative approach for rapid diagnosis of .
Front Bioeng Biotechnol. 2025 Aug 11;13:1663915. doi: 10.3389/fbioe.2025.1663915. eCollection 2025.
3
Discovery of CRISPR-Cas12a clades using a large language model.
Nat Commun. 2025 Aug 23;16(1):7877. doi: 10.1038/s41467-025-63160-4.
5
Research progress on the application of RPA-CRISPR/Cas12a in the rapid visual detection of pathogenic microorganisms.
Front Cell Infect Microbiol. 2025 Jul 30;15:1640938. doi: 10.3389/fcimb.2025.1640938. eCollection 2025.
6
Trends and challenges of AAV-delivered gene editing therapeutics for CNS disorders: Implications for neurodegenerative disease.
Mol Ther Nucleic Acids. 2025 Jul 17;36(3):102635. doi: 10.1016/j.omtn.2025.102635. eCollection 2025 Sep 9.
7
Unlocking the potential of CRISPR tools and databases for precision genome editing.
Front Plant Sci. 2025 Jul 21;16:1563711. doi: 10.3389/fpls.2025.1563711. eCollection 2025.
8
The stress of carrying CRISPR-Cas.
Virulence. 2025 Dec;16(1):2541701. doi: 10.1080/21505594.2025.2541701. Epub 2025 Aug 4.
9
Quantum dot molecular beacons achieve sub-10 pM CRISPR-Cas detection in field-ready assays.
Sci Rep. 2025 Jul 31;15(1):27950. doi: 10.1038/s41598-025-09434-9.
10
Metagenomic selections reveal diverse antiphage defenses in human and environmental microbiomes.
Cell Host Microbe. 2025 Jul 20. doi: 10.1016/j.chom.2025.07.005.

本文引用的文献

1
Casposons: mobile genetic elements that gave rise to the CRISPR-Cas adaptation machinery.
Curr Opin Microbiol. 2017 Aug;38:36-43. doi: 10.1016/j.mib.2017.04.004. Epub 2017 May 1.
2
CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes.
Cell. 2017 Apr 20;169(3):559. doi: 10.1016/j.cell.2017.04.005.
3
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
4
Building the Class 2 CRISPR-Cas Arsenal.
Mol Cell. 2017 Feb 2;65(3):377-379. doi: 10.1016/j.molcel.2017.01.024.
5
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
6
Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities.
Cell. 2017 Jan 12;168(1-2):121-134.e12. doi: 10.1016/j.cell.2016.12.031.
7
Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.
Mol Cell. 2017 Feb 16;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub 2017 Jan 5.
8
New CRISPR-Cas systems from uncultivated microbes.
Nature. 2017 Feb 9;542(7640):237-241. doi: 10.1038/nature21059. Epub 2016 Dec 22.
9
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
10
Naturally Occurring Off-Switches for CRISPR-Cas9.
Cell. 2016 Dec 15;167(7):1829-1838.e9. doi: 10.1016/j.cell.2016.11.017. Epub 2016 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验