Suppr超能文献

CRISPR-Cas9的天然存在的开关

Naturally Occurring Off-Switches for CRISPR-Cas9.

作者信息

Pawluk April, Amrani Nadia, Zhang Yan, Garcia Bianca, Hidalgo-Reyes Yurima, Lee Jooyoung, Edraki Alireza, Shah Megha, Sontheimer Erik J, Maxwell Karen L, Davidson Alan R

机构信息

Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.

RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-2324, USA.

出版信息

Cell. 2016 Dec 15;167(7):1829-1838.e9. doi: 10.1016/j.cell.2016.11.017. Epub 2016 Dec 8.

Abstract

CRISPR-Cas9 technology would be enhanced by the ability to inhibit Cas9 function spatially, temporally, or conditionally. Previously, we discovered small proteins encoded by bacteriophages that inhibit the CRISPR-Cas systems of their host bacteria. These "anti-CRISPRs" were specific to type I CRISPR-Cas systems that do not employ the Cas9 protein. We posited that nature would also yield Cas9 inhibitors in response to the evolutionary arms race between bacteriophages and their hosts. Here, we report the discovery of three distinct families of anti-CRISPRs that specifically inhibit the CRISPR-Cas9 system of Neisseria meningitidis. We show that these proteins bind directly to N. meningitidis Cas9 (NmeCas9) and can be used as potent inhibitors of genome editing by this system in human cells. These anti-CRISPR proteins now enable "off-switches" for CRISPR-Cas9 activity and provide a genetically encodable means to inhibit CRISPR-Cas9 genome editing in eukaryotes. VIDEO ABSTRACT.

摘要

如果能够在空间、时间或条件上抑制Cas9功能,CRISPR-Cas9技术将会得到改进。此前,我们发现噬菌体编码的小蛋白可抑制其宿主细菌的CRISPR-Cas系统。这些“抗CRISPR”蛋白对不使用Cas9蛋白的I型CRISPR-Cas系统具有特异性。我们推测,在噬菌体与其宿主之间的进化军备竞赛中,自然界也会产生Cas9抑制剂。在此,我们报告发现了三个不同的抗CRISPR蛋白家族,它们可特异性抑制脑膜炎奈瑟菌的CRISPR-Cas9系统。我们表明,这些蛋白可直接结合脑膜炎奈瑟菌Cas9(NmeCas9),并可作为该系统在人类细胞中进行基因组编辑的有效抑制剂。这些抗CRISPR蛋白现在为CRISPR-Cas9活性提供了“关闭开关”,并提供了一种可遗传编码的方法来抑制真核生物中的CRISPR-Cas9基因组编辑。视频摘要。

相似文献

1
Naturally Occurring Off-Switches for CRISPR-Cas9.
Cell. 2016 Dec 15;167(7):1829-1838.e9. doi: 10.1016/j.cell.2016.11.017. Epub 2016 Dec 8.
3
Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
Mol Cell. 2018 Mar 1;69(5):906-914.e4. doi: 10.1016/j.molcel.2018.01.025. Epub 2018 Feb 15.
4
Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins.
Mol Cell. 2019 Apr 18;74(2):296-309.e7. doi: 10.1016/j.molcel.2019.01.038. Epub 2019 Mar 5.
5
Phage-Encoded Anti-CRISPR Defenses.
Annu Rev Genet. 2018 Nov 23;52:445-464. doi: 10.1146/annurev-genet-120417-031321. Epub 2018 Sep 12.
6
The Anti-CRISPR Story: A Battle for Survival.
Mol Cell. 2017 Oct 5;68(1):8-14. doi: 10.1016/j.molcel.2017.09.002.
8
9
Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1.
Biochem Biophys Res Commun. 2023 Apr 30;654:34-39. doi: 10.1016/j.bbrc.2023.02.065. Epub 2023 Feb 28.
10

引用本文的文献

1
Alternatives to antibiotics for sustainable livestock production in the context of the One Health approach: tackling a common foe.
Front Vet Sci. 2025 Aug 13;12:1605215. doi: 10.3389/fvets.2025.1605215. eCollection 2025.
2
Controlling CRISPR-Cas9 genome editing in human cells using a molecular glue degrader.
Mol Ther Nucleic Acids. 2025 Jul 21;36(3):102640. doi: 10.1016/j.omtn.2025.102640. eCollection 2025 Sep 9.
3
Plant immunity to insect herbivores: mechanisms, interactions, and innovations for sustainable pest management.
Front Plant Sci. 2025 Jul 22;16:1599450. doi: 10.3389/fpls.2025.1599450. eCollection 2025.
5
CRISPR-Cas Systems: A Functional Perspective and Innovations.
Int J Mol Sci. 2025 Apr 12;26(8):3645. doi: 10.3390/ijms26083645.
6
Mechanism of Cas9 inhibition by AcrIIA11.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf318.
7
Gene regulation technologies for gene and cell therapy.
Mol Ther. 2025 May 7;33(5):2104-2122. doi: 10.1016/j.ymthe.2025.04.004. Epub 2025 Apr 6.
8
A Study of CRISPR Ribonucleoprotein Displacement in Cell-Free Systems.
ACS Omega. 2025 Feb 26;10(9):9154-9164. doi: 10.1021/acsomega.4c09275. eCollection 2025 Mar 11.
9
A deep mutational scanning platform to characterize the fitness landscape of anti-CRISPR proteins.
Nucleic Acids Res. 2024 Dec 11;52(22):e103. doi: 10.1093/nar/gkae1052.
10

本文引用的文献

1
Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species.
Nat Microbiol. 2016 Jun 13;1(8):16085. doi: 10.1038/nmicrobiol.2016.85.
2
CRISPR/Cas9 in Genome Editing and Beyond.
Annu Rev Biochem. 2016 Jun 2;85:227-64. doi: 10.1146/annurev-biochem-060815-014607. Epub 2016 Apr 25.
3
The diversity-generating benefits of a prokaryotic adaptive immune system.
Nature. 2016 Apr 21;532(7599):385-8. doi: 10.1038/nature17436. Epub 2016 Apr 13.
4
Genetic and life-history traits associated with the distribution of prophages in bacteria.
ISME J. 2016 Nov;10(11):2744-2754. doi: 10.1038/ismej.2016.47. Epub 2016 Mar 25.
6
Structure and Engineering of Francisella novicida Cas9.
Cell. 2016 Feb 25;164(5):950-61. doi: 10.1016/j.cell.2016.01.039. Epub 2016 Feb 11.
7
Chemical and Biophysical Modulation of Cas9 for Tunable Genome Engineering.
ACS Chem Biol. 2016 Mar 18;11(3):681-8. doi: 10.1021/acschembio.5b01019. Epub 2016 Feb 9.
8
The Neisseria meningitidis CRISPR-Cas9 System Enables Specific Genome Editing in Mammalian Cells.
Mol Ther. 2016 Mar;24(3):645-54. doi: 10.1038/mt.2016.8. Epub 2016 Jan 19.
9
Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery.
Nat Methods. 2016 Jan;13(1):41-50. doi: 10.1038/nmeth.3684.
10
Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation.
Nat Rev Mol Cell Biol. 2016 Jan;17(1):5-15. doi: 10.1038/nrm.2015.2. Epub 2015 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验