Pawluk April, Amrani Nadia, Zhang Yan, Garcia Bianca, Hidalgo-Reyes Yurima, Lee Jooyoung, Edraki Alireza, Shah Megha, Sontheimer Erik J, Maxwell Karen L, Davidson Alan R
Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
RNA Therapeutics Institute, Program in Molecular Medicine, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605-2324, USA.
Cell. 2016 Dec 15;167(7):1829-1838.e9. doi: 10.1016/j.cell.2016.11.017. Epub 2016 Dec 8.
CRISPR-Cas9 technology would be enhanced by the ability to inhibit Cas9 function spatially, temporally, or conditionally. Previously, we discovered small proteins encoded by bacteriophages that inhibit the CRISPR-Cas systems of their host bacteria. These "anti-CRISPRs" were specific to type I CRISPR-Cas systems that do not employ the Cas9 protein. We posited that nature would also yield Cas9 inhibitors in response to the evolutionary arms race between bacteriophages and their hosts. Here, we report the discovery of three distinct families of anti-CRISPRs that specifically inhibit the CRISPR-Cas9 system of Neisseria meningitidis. We show that these proteins bind directly to N. meningitidis Cas9 (NmeCas9) and can be used as potent inhibitors of genome editing by this system in human cells. These anti-CRISPR proteins now enable "off-switches" for CRISPR-Cas9 activity and provide a genetically encodable means to inhibit CRISPR-Cas9 genome editing in eukaryotes. VIDEO ABSTRACT.
如果能够在空间、时间或条件上抑制Cas9功能,CRISPR-Cas9技术将会得到改进。此前,我们发现噬菌体编码的小蛋白可抑制其宿主细菌的CRISPR-Cas系统。这些“抗CRISPR”蛋白对不使用Cas9蛋白的I型CRISPR-Cas系统具有特异性。我们推测,在噬菌体与其宿主之间的进化军备竞赛中,自然界也会产生Cas9抑制剂。在此,我们报告发现了三个不同的抗CRISPR蛋白家族,它们可特异性抑制脑膜炎奈瑟菌的CRISPR-Cas9系统。我们表明,这些蛋白可直接结合脑膜炎奈瑟菌Cas9(NmeCas9),并可作为该系统在人类细胞中进行基因组编辑的有效抑制剂。这些抗CRISPR蛋白现在为CRISPR-Cas9活性提供了“关闭开关”,并提供了一种可遗传编码的方法来抑制真核生物中的CRISPR-Cas9基因组编辑。视频摘要。