Suppr超能文献

原核生物适应性免疫系统产生多样性的益处。

The diversity-generating benefits of a prokaryotic adaptive immune system.

作者信息

van Houte Stineke, Ekroth Alice K E, Broniewski Jenny M, Chabas Hélène, Ashby Ben, Bondy-Denomy Joseph, Gandon Sylvain, Boots Mike, Paterson Steve, Buckling Angus, Westra Edze R

机构信息

ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.

CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293, Montpellier Cedex 5, France.

出版信息

Nature. 2016 Apr 21;532(7599):385-8. doi: 10.1038/nature17436. Epub 2016 Apr 13.

Abstract

Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms.

摘要

原核生物的CRISPR-Cas适应性免疫系统将源自病毒和其他寄生DNA元件的间隔序列插入CRISPR基因座,以提供序列特异性免疫。这常常导致群体内间隔序列的高度多样性,但尚不清楚这种多样性是否重要以及为何重要。在此我们表明,由于这种间隔序列多样性,病毒无法再通过点突变进化以克服CRISPR-Cas,从而导致病毒迅速灭绝。这种效应源于间隔序列多样性与感染的高特异性之间的协同作用,这大大增强了总体群体抗性。我们提出,由此产生的依赖CRISPR的细菌-病毒共同进化的短暂特性,为复杂的病毒编码抗CRISPR机制的进化提供了强大的选择压力。

相似文献

1
The diversity-generating benefits of a prokaryotic adaptive immune system.
Nature. 2016 Apr 21;532(7599):385-8. doi: 10.1038/nature17436. Epub 2016 Apr 13.
2
Bacterial biodiversity drives the evolution of CRISPR-based phage resistance.
Nature. 2019 Oct;574(7779):549-552. doi: 10.1038/s41586-019-1662-9. Epub 2019 Oct 23.
3
Anti-CRISPR Phages Cooperate to Overcome CRISPR-Cas Immunity.
Cell. 2018 Aug 9;174(4):908-916.e12. doi: 10.1016/j.cell.2018.05.058. Epub 2018 Jul 19.
4
Coevolution between bacterial CRISPR-Cas systems and their bacteriophages.
Cell Host Microbe. 2021 May 12;29(5):715-725. doi: 10.1016/j.chom.2021.03.018.
5
Bacteriophage Cooperation Suppresses CRISPR-Cas3 and Cas9 Immunity.
Cell. 2018 Aug 9;174(4):917-925.e10. doi: 10.1016/j.cell.2018.06.013. Epub 2018 Jul 19.
6
Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition.
Cell Host Microbe. 2022 Jan 12;30(1):31-40.e5. doi: 10.1016/j.chom.2021.11.014. Epub 2021 Dec 20.
7
The effect of phage genetic diversity on bacterial resistance evolution.
ISME J. 2020 Mar;14(3):828-836. doi: 10.1038/s41396-019-0577-7. Epub 2020 Jan 2.
8
Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa.
Mol Genet Genomics. 2019 Oct;294(5):1095-1105. doi: 10.1007/s00438-019-01575-7. Epub 2019 May 16.
9
Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages.
Nat Commun. 2014 Jul 24;5:4399. doi: 10.1038/ncomms5399.
10
Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system.
Proc Natl Acad Sci U S A. 2017 Jan 3;114(1):131-135. doi: 10.1073/pnas.1617415113. Epub 2016 Nov 14.

引用本文的文献

1
Phage provoke growth delays and SOS response induction despite CRISPR-Cas protection.
Philos Trans R Soc Lond B Biol Sci. 2025 Sep 4;380(1934):20240474. doi: 10.1098/rstb.2024.0474.
2
Genomic Insights into Emerging Multidrug-Resistant Strains: First Report from Thailand.
Antibiotics (Basel). 2025 Jul 24;14(8):746. doi: 10.3390/antibiotics14080746.
3
The speed of vaccination rollout and the risk of pathogen adaptation.
J R Soc Interface. 2025 Jul;22(228):20250060. doi: 10.1098/rsif.2025.0060. Epub 2025 Jul 9.
5
Bacteriophages in evade the CRISPR-Cas I-F system by depletion of PAM sequences.
Microb Genom. 2025 Jun;11(6). doi: 10.1099/mgen.0.001423.
6
Advances in Diversity, Evolutionary Dynamics and Biotechnological Potential of Restriction-Modification Systems.
Microorganisms. 2025 May 14;13(5):1126. doi: 10.3390/microorganisms13051126.
7
Re-Emergence of Bacteriophages and Their Products as Antibacterial Agents: An Overview.
Int J Mol Sci. 2025 Feb 19;26(4):1755. doi: 10.3390/ijms26041755.
8
A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean.
Commun Biol. 2025 Feb 5;8(1):179. doi: 10.1038/s42003-025-07608-9.
9
Nucleic acid recognition during prokaryotic immunity.
Mol Cell. 2025 Jan 16;85(2):309-322. doi: 10.1016/j.molcel.2024.12.007.
10
A CRISPR-Cas9 system protecting E. coli against acquisition of antibiotic resistance genes.
Sci Rep. 2025 Jan 9;15(1):1545. doi: 10.1038/s41598-025-85334-2.

本文引用的文献

1
ANALYZING TABLES OF STATISTICAL TESTS.
Evolution. 1989 Jan;43(1):223-225. doi: 10.1111/j.1558-5646.1989.tb04220.x.
2
Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus.
Proc Biol Sci. 2015 Aug 7;282(1812):20151270. doi: 10.1098/rspb.2015.1270.
3
CRISPR immunity drives rapid phage genome evolution in Streptococcus thermophilus.
mBio. 2015 Apr 21;6(2):e00262-15. doi: 10.1128/mBio.00262-15.
4
Parasite Exposure Drives Selective Evolution of Constitutive versus Inducible Defense.
Curr Biol. 2015 Apr 20;25(8):1043-9. doi: 10.1016/j.cub.2015.01.065. Epub 2015 Mar 12.
5
Diversity and the maintenance of sex by parasites.
J Evol Biol. 2015 Mar;28(3):511-20. doi: 10.1111/jeb.12590. Epub 2015 Feb 12.
6
CRISPR-induced distributed immunity in microbial populations.
PLoS One. 2014 Jul 7;9(7):e101710. doi: 10.1371/journal.pone.0101710. eCollection 2014.
7
Unravelling the structural and mechanistic basis of CRISPR-Cas systems.
Nat Rev Microbiol. 2014 Jul;12(7):479-92. doi: 10.1038/nrmicro3279. Epub 2014 Jun 9.
8
Degenerate target sites mediate rapid primed CRISPR adaptation.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):E1629-38. doi: 10.1073/pnas.1400071111. Epub 2014 Apr 7.
9
Evolutionary dynamics of the prokaryotic adaptive immunity system CRISPR-Cas in an explicit ecological context.
J Bacteriol. 2013 Sep;195(17):3834-44. doi: 10.1128/JB.00412-13. Epub 2013 Jun 21.
10
The population and evolutionary dynamics of phage and bacteria with CRISPR-mediated immunity.
PLoS Genet. 2013;9(3):e1003312. doi: 10.1371/journal.pgen.1003312. Epub 2013 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验