van Houte Stineke, Ekroth Alice K E, Broniewski Jenny M, Chabas Hélène, Ashby Ben, Bondy-Denomy Joseph, Gandon Sylvain, Boots Mike, Paterson Steve, Buckling Angus, Westra Edze R
ESI and CEC, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK.
CEFE UMR 5175, CNRS-Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919, route de Mende 34293, Montpellier Cedex 5, France.
Nature. 2016 Apr 21;532(7599):385-8. doi: 10.1038/nature17436. Epub 2016 Apr 13.
Prokaryotic CRISPR-Cas adaptive immune systems insert spacers derived from viruses and other parasitic DNA elements into CRISPR loci to provide sequence-specific immunity. This frequently results in high within-population spacer diversity, but it is unclear if and why this is important. Here we show that, as a result of this spacer diversity, viruses can no longer evolve to overcome CRISPR-Cas by point mutation, which results in rapid virus extinction. This effect arises from synergy between spacer diversity and the high specificity of infection, which greatly increases overall population resistance. We propose that the resulting short-lived nature of CRISPR-dependent bacteria-virus coevolution has provided strong selection for the evolution of sophisticated virus-encoded anti-CRISPR mechanisms.
原核生物的CRISPR-Cas适应性免疫系统将源自病毒和其他寄生DNA元件的间隔序列插入CRISPR基因座,以提供序列特异性免疫。这常常导致群体内间隔序列的高度多样性,但尚不清楚这种多样性是否重要以及为何重要。在此我们表明,由于这种间隔序列多样性,病毒无法再通过点突变进化以克服CRISPR-Cas,从而导致病毒迅速灭绝。这种效应源于间隔序列多样性与感染的高特异性之间的协同作用,这大大增强了总体群体抗性。我们提出,由此产生的依赖CRISPR的细菌-病毒共同进化的短暂特性,为复杂的病毒编码抗CRISPR机制的进化提供了强大的选择压力。