Suppr超能文献

天然脑膜炎奈瑟菌 CRISPR-Cas9 系统对 RNA 的可编程切割和识别。

Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.

机构信息

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Mol Cell. 2018 Mar 1;69(5):906-914.e4. doi: 10.1016/j.molcel.2018.01.025. Epub 2018 Feb 15.

Abstract

The microbial CRISPR systems enable adaptive defense against mobile elements and also provide formidable tools for genome engineering. The Cas9 proteins are type II CRISPR-associated, RNA-guided DNA endonucleases that identify double-stranded DNA targets by sequence complementarity and protospacer adjacent motif (PAM) recognition. Here we report that the type II-C CRISPR-Cas9 from Neisseria meningitidis (Nme) is capable of programmable, RNA-guided, site-specific cleavage and recognition of single-stranded RNA targets and that this ribonuclease activity is independent of the PAM sequence. We define the mechanistic feature and specificity constraint for RNA cleavage by NmeCas9 and also show that nuclease null dNmeCas9 binds to RNA target complementary to CRISPR RNA. Finally, we demonstrate that NmeCas9-catalyzed RNA cleavage can be blocked by three families of type II-C anti-CRISPR proteins. These results fundamentally expand the targeting capacities of CRISPR-Cas9 and highlight the potential utility of NmeCas9 as a single platform to target both RNA and DNA.

摘要

微生物的 CRISPR 系统能够实现对移动元件的适应性防御,同时也为基因组工程提供了强大的工具。Cas9 蛋白是 II 型 CRISPR 相关的、RNA 指导的 DNA 内切酶,通过序列互补性和原间隔序列邻近基序(PAM)识别来识别双链 DNA 靶标。在这里,我们报告称脑膜炎奈瑟菌(Nme)的 II 型-C CRISPR-Cas9 能够对单链 RNA 靶标进行可编程、RNA 指导的、位点特异性切割和识别,并且这种核糖核酸酶活性与 PAM 序列无关。我们定义了 NmeCas9 的 RNA 切割的机制特征和特异性限制,还表明无核酸酶的 dNmeCas9 与与 CRISPR RNA 互补的 RNA 靶标结合。最后,我们证明 NmeCas9 催化的 RNA 切割可以被三种类型 II-C 抗 CRISPR 蛋白家族阻断。这些结果从根本上扩展了 CRISPR-Cas9 的靶向能力,并强调了 NmeCas9 作为一个单一平台同时靶向 RNA 和 DNA 的潜在用途。

相似文献

1
Programmable RNA Cleavage and Recognition by a Natural CRISPR-Cas9 System from Neisseria meningitidis.
Mol Cell. 2018 Mar 1;69(5):906-914.e4. doi: 10.1016/j.molcel.2018.01.025. Epub 2018 Feb 15.
2
CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9.
Mol Cell. 2018 Mar 1;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.
3
DNase H Activity of Neisseria meningitidis Cas9.
Mol Cell. 2015 Oct 15;60(2):242-55. doi: 10.1016/j.molcel.2015.09.020.
4
Biochemical characterization of RNA-guided ribonuclease activities for CRISPR-Cas9 systems.
Methods. 2020 Feb 1;172:32-41. doi: 10.1016/j.ymeth.2019.06.018. Epub 2019 Jun 20.
5
6
Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
Mol Cell. 2015 Nov 5;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030.
8
Naturally Occurring Off-Switches for CRISPR-Cas9.
Cell. 2016 Dec 15;167(7):1829-1838.e9. doi: 10.1016/j.cell.2016.11.017. Epub 2016 Dec 8.
9
Programmable RNA recognition and cleavage by CRISPR/Cas9.
Nature. 2014 Dec 11;516(7530):263-6. doi: 10.1038/nature13769. Epub 2014 Sep 28.
10
Mechanism of inhibition of CRISPR-Cas9 by anti-CRISPR protein AcrIIC1.
Biochem Biophys Res Commun. 2023 Apr 30;654:34-39. doi: 10.1016/j.bbrc.2023.02.065. Epub 2023 Feb 28.

引用本文的文献

1
Adaptive immunity of type VI CRISPR-Cas systems associated with reverse transcriptase-Cas1 fusion proteins.
Nucleic Acids Res. 2024 Dec 11;52(22):14229-14243. doi: 10.1093/nar/gkae1154.
2
Repair of CRISPR-guided RNA breaks enables site-specific RNA excision in human cells.
Science. 2024 May 17;384(6697):808-814. doi: 10.1126/science.adk5518. Epub 2024 Apr 25.
3
Exploiting activation and inactivation mechanisms in type I-C CRISPR-Cas3 for genome-editing applications.
Mol Cell. 2024 Feb 1;84(3):463-475.e5. doi: 10.1016/j.molcel.2023.12.034. Epub 2024 Jan 18.
4
RNA-Dependent RNA Targeting by CRISPR-Cas Systems: Characterizations and Applications.
Int J Mol Sci. 2023 Apr 7;24(8):6894. doi: 10.3390/ijms24086894.
5
Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications.
Mol Biomed. 2023 Apr 7;4(1):10. doi: 10.1186/s43556-023-00115-5.
6
Programmable macromolecule-based RNA-targeting therapies to treat human neurological disorders.
RNA. 2023 Apr;29(4):489-497. doi: 10.1261/rna.079519.122. Epub 2023 Jan 24.
7
A redox switch regulates the assembly and anti-CRISPR activity of AcrIIC1.
Nat Commun. 2022 Nov 18;13(1):7071. doi: 10.1038/s41467-022-34551-8.
8
A Mutated Nme1Cas9 Is a Functional Alternative RNase to Both LwaCas13a and RfxCas13d in the Yeast .
Front Bioeng Biotechnol. 2022 Jun 2;10:922949. doi: 10.3389/fbioe.2022.922949. eCollection 2022.
9
Generating dynamic gene expression patterns without the need for regulatory circuits.
PLoS One. 2022 May 26;17(5):e0268883. doi: 10.1371/journal.pone.0268883. eCollection 2022.
10
Two Compact Cas9 Ortholog-Based Cytosine Base Editors Expand the DNA Targeting Scope and Applications and .
Front Cell Dev Biol. 2022 Mar 1;10:809922. doi: 10.3389/fcell.2022.809922. eCollection 2022.

本文引用的文献

1
RNA-dependent RNA targeting by CRISPR-Cas9.
Elife. 2018 Jan 5;7:e32724. doi: 10.7554/eLife.32724.
2
RNA editing with CRISPR-Cas13.
Science. 2017 Nov 24;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub 2017 Oct 25.
3
RNA targeting with CRISPR-Cas13.
Nature. 2017 Oct 12;550(7675):280-284. doi: 10.1038/nature24049. Epub 2017 Oct 4.
4
A Broad-Spectrum Inhibitor of CRISPR-Cas9.
Cell. 2017 Sep 7;170(6):1224-1233.e15. doi: 10.1016/j.cell.2017.07.037. Epub 2017 Aug 24.
5
Elimination of Toxic Microsatellite Repeat Expansion RNA by RNA-Targeting Cas9.
Cell. 2017 Aug 24;170(5):899-912.e10. doi: 10.1016/j.cell.2017.07.010. Epub 2017 Aug 10.
6
An anti-CRISPR from a virulent streptococcal phage inhibits Streptococcus pyogenes Cas9.
Nat Microbiol. 2017 Oct;2(10):1374-1380. doi: 10.1038/s41564-017-0004-7. Epub 2017 Aug 7.
7
Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
Nature. 2017 Aug 31;548(7669):543-548. doi: 10.1038/nature23467. Epub 2017 Jul 19.
8
A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems.
Science. 2017 Aug 11;357(6351):605-609. doi: 10.1126/science.aao0100. Epub 2017 Jun 29.
9
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
10
Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein.
Nature. 2017 Jun 15;546(7658):436-439. doi: 10.1038/nature22377. Epub 2017 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验