Suppr超能文献

非随机数据库分析模拟随机临床试验:32 项临床试验的结果。

Emulation of Randomized Clinical Trials With Nonrandomized Database Analyses: Results of 32 Clinical Trials.

机构信息

Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.

Now with Optum, Boston, Massachusetts.

出版信息

JAMA. 2023 Apr 25;329(16):1376-1385. doi: 10.1001/jama.2023.4221.

Abstract

IMPORTANCE

Nonrandomized studies using insurance claims databases can be analyzed to produce real-world evidence on the effectiveness of medical products. Given the lack of baseline randomization and measurement issues, concerns exist about whether such studies produce unbiased treatment effect estimates.

OBJECTIVE

To emulate the design of 30 completed and 2 ongoing randomized clinical trials (RCTs) of medications with database studies using observational analogues of the RCT design parameters (population, intervention, comparator, outcome, time [PICOT]) and to quantify agreement in RCT-database study pairs.

DESIGN, SETTING, AND PARTICIPANTS: New-user cohort studies with propensity score matching using 3 US claims databases (Optum Clinformatics, MarketScan, and Medicare). Inclusion-exclusion criteria for each database study were prespecified to emulate the corresponding RCT. RCTs were explicitly selected based on feasibility, including power, key confounders, and end points more likely to be emulated with real-world data. All 32 protocols were registered on ClinicalTrials.gov before conducting analyses. Emulations were conducted from 2017 through 2022.

EXPOSURES

Therapies for multiple clinical conditions were included.

MAIN OUTCOMES AND MEASURES

Database study emulations focused on the primary outcome of the corresponding RCT. Findings of database studies were compared with RCTs using predefined metrics, including Pearson correlation coefficients and binary metrics based on statistical significance agreement, estimate agreement, and standardized difference.

RESULTS

In these highly selected RCTs, the overall observed agreement between the RCT and the database emulation results was a Pearson correlation of 0.82 (95% CI, 0.64-0.91), with 75% meeting statistical significance, 66% estimate agreement, and 75% standardized difference agreement. In a post hoc analysis limited to 16 RCTs with closer emulation of trial design and measurements, concordance was higher (Pearson r, 0.93; 95% CI, 0.79-0.97; 94% meeting statistical significance, 88% estimate agreement, 88% standardized difference agreement). Weaker concordance occurred among 16 RCTs for which close emulation of certain design elements that define the research question (PICOT) with data from insurance claims was not possible (Pearson r, 0.53; 95% CI, 0.00-0.83; 56% meeting statistical significance, 50% estimate agreement, 69% standardized difference agreement).

CONCLUSIONS AND RELEVANCE

Real-world evidence studies can reach similar conclusions as RCTs when design and measurements can be closely emulated, but this may be difficult to achieve. Concordance in results varied depending on the agreement metric. Emulation differences, chance, and residual confounding can contribute to divergence in results and are difficult to disentangle.

摘要

重要性

使用保险索赔数据库的非随机研究可以分析产生关于医疗产品有效性的真实世界证据。鉴于缺乏基线随机化和测量问题,人们担心此类研究是否会产生无偏的治疗效果估计。

目的

使用观察性模拟 RCT 设计参数(人群、干预、对照、结局、时间 [PICOT])的保险索赔数据库研究来模拟 30 项已完成和 2 项正在进行的药物随机对照试验(RCT)的设计,并量化 RCT-数据库研究对的一致性。

设计、设置和参与者:使用 3 个美国索赔数据库(Optum Clinformatics、MarketScan 和 Medicare)进行新用户队列研究,并进行倾向评分匹配。每个数据库研究的纳入-排除标准都是预先规定的,以模拟相应的 RCT。RCT 是根据可行性(包括功效、关键混杂因素和更有可能使用真实世界数据模拟的终点)明确选择的。所有 32 项方案都在进行分析之前在 ClinicalTrials.gov 上进行了注册。模拟工作于 2017 年至 2022 年进行。

暴露

纳入了多种临床情况的治疗方法。

主要结果和测量

数据库研究模拟侧重于相应 RCT 的主要结局。使用预定义指标比较数据库研究和 RCT 的结果,包括 Pearson 相关系数和基于统计显著性、估计一致性和标准化差异的二进制指标。

结果

在这些高度选择的 RCT 中,RCT 和数据库模拟结果之间的总体观察一致性为 0.82(95%CI,0.64-0.91)的 Pearson 相关系数,75%具有统计学意义,66%的估计一致性和 75%的标准化差异一致性。在一项仅限于更接近试验设计和测量模拟的 16 项 RCT 的事后分析中,一致性更高(Pearson r,0.93;95%CI,0.79-0.97;94%具有统计学意义,88%的估计一致性,88%的标准化差异一致性)。对于某些设计元素(PICOT)无法通过保险索赔数据进行紧密模拟的 16 项 RCT,一致性较弱(Pearson r,0.53;95%CI,0.00-0.83;56%具有统计学意义,50%的估计一致性,69%的标准化差异一致性)。

结论和相关性

当设计和测量可以紧密模拟时,真实世界证据研究可以得出与 RCT 相似的结论,但这可能很难实现。结果的一致性取决于一致性指标。结果的差异、偶然性和残留混杂因素可能导致结果出现分歧,并且难以区分。

相似文献

3
Emulating Randomized Clinical Trials With Nonrandomized Real-World Evidence Studies: First Results From the RCT DUPLICATE Initiative.
Circulation. 2021 Mar 9;143(10):1002-1013. doi: 10.1161/CIRCULATIONAHA.120.051718. Epub 2020 Dec 17.
5
Assessing the use of observational methods and real-world data to emulate ongoing randomized controlled trials.
Clin Trials. 2023 Dec;20(6):689-698. doi: 10.1177/17407745231193137. Epub 2023 Aug 17.
9
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials.
Cochrane Database Syst Rev. 2014 Apr 29;2014(4):MR000034. doi: 10.1002/14651858.MR000034.pub2.

引用本文的文献

1
A scoping review on metrics to quantify reproducibility: a multitude of questions leads to a multitude of metrics.
R Soc Open Sci. 2025 Jul 15;12(7):242076. doi: 10.1098/rsos.242076. eCollection 2025 Jul.
4
A hybrid simulation model of HIV program interventions: from transmission behavior to macroeconomic impacts.
Ther Adv Drug Saf. 2025 Aug 20;16:20420986251367510. doi: 10.1177/20420986251367510. eCollection 2025.
6
Meta-regression to explain shrinkage and heterogeneity in large-scale replication projects.
PLoS One. 2025 Aug 1;20(8):e0327799. doi: 10.1371/journal.pone.0327799. eCollection 2025.
7
Harnessing digital health technologies and real-world evidence to enhance clinical research and patient outcomes.
Digit Health. 2025 Jul 23;11:20552076251362097. doi: 10.1177/20552076251362097. eCollection 2025 Jan-Dec.
9
Association of Medication Use and 8-Year Mortality Risk in Patients With Parkinson Disease: Drug-Wide Trial Emulation.
Neurology. 2025 Aug 12;105(3):e213783. doi: 10.1212/WNL.0000000000213783. Epub 2025 Jul 11.
10
Missing the target in target trial emulation.
Crit Care. 2025 Jul 1;29(1):266. doi: 10.1186/s13054-025-05515-3.

本文引用的文献

1
Cardiovascular Safety of Degarelix Versus Leuprolide in Patients With Prostate Cancer: The Primary Results of the PRONOUNCE Randomized Trial.
Circulation. 2021 Oct 19;144(16):1295-1307. doi: 10.1161/CIRCULATIONAHA.121.056810. Epub 2021 Aug 30.
2
Multiply robust causal inference with double-negative control adjustment for categorical unmeasured confounding.
J R Stat Soc Series B Stat Methodol. 2020 Apr;82(2):521-540. doi: 10.1111/rssb.12361. Epub 2020 Jan 22.
3
Emulating Randomized Clinical Trials With Nonrandomized Real-World Evidence Studies: First Results From the RCT DUPLICATE Initiative.
Circulation. 2021 Mar 9;143(10):1002-1013. doi: 10.1161/CIRCULATIONAHA.120.051718. Epub 2020 Dec 17.
4
Randomized Controlled Trials Versus Real World Evidence: Neither Magic Nor Myth.
Clin Pharmacol Ther. 2021 May;109(5):1212-1218. doi: 10.1002/cpt.2083. Epub 2020 Nov 12.
5
6
Extending inferences from a randomized trial to a new target population.
Stat Med. 2020 Jun 30;39(14):1999-2014. doi: 10.1002/sim.8426. Epub 2020 Apr 6.
7
Benchmarking Observational Analyses Against Randomized Trials: a Review of Studies Assessing Propensity Score Methods.
J Gen Intern Med. 2020 May;35(5):1396-1404. doi: 10.1007/s11606-020-05713-5. Epub 2020 Mar 19.
8
Emulation Differences vs. Biases When Calibrating Real-World Evidence Findings Against Randomized Controlled Trials.
Clin Pharmacol Ther. 2020 Apr;107(4):735-737. doi: 10.1002/cpt.1793. Epub 2020 Feb 12.
9
Nonrandomized Real-World Evidence to Support Regulatory Decision Making: Process for a Randomized Trial Replication Project.
Clin Pharmacol Ther. 2020 Apr;107(4):817-826. doi: 10.1002/cpt.1633. Epub 2019 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验