Suppr超能文献

使用单细胞代谢组学定量细胞异质性和亚群。

Quantifying Cell Heterogeneity and Subpopulations Using Single Cell Metabolomics.

机构信息

Chemistry and Biochemistry Department, University of Oklahoma, Norman, Oklahoma 73072, United States.

Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida 33647, United States.

出版信息

Anal Chem. 2023 May 9;95(18):7127-7133. doi: 10.1021/acs.analchem.2c05245. Epub 2023 Apr 28.

Abstract

Mass spectrometry (MS) has become an indispensable tool for metabolomics studies. However, due to the lack of applicable experimental platforms, suitable algorithm, software, and quantitative analyses of cell heterogeneity and subpopulations, investigating global metabolomics profiling at the single cell level remains challenging. We combined the Single-probe single cell MS (SCMS) experimental technique with a bioinformatics software package, SinCHet-MS (Single Cell Heterogeneity for Mass Spectrometry), to characterize changes of tumor heterogeneity, quantify cell subpopulations, and prioritize the metabolite biomarkers of each subpopulation. As proof of principle studies, two melanoma cancer cell lines, the primary (WM115; with a lower drug resistance) and the metastatic (WM266-4; with a higher drug resistance), were used as models. Our results indicate that after the treatment of the anticancer drug vemurafenib, a new subpopulation emerged in WM115 cells, while the proportion of the existing subpopulations was changed in the WM266-4 cells. In addition, metabolites for each subpopulation can be prioritized. Combining the SCMS experimental technique with a bioinformatics tool, our label-free approach can be applied to quantitatively study cell heterogeneity, prioritize markers for further investigation, and improve the understanding of cell metabolism in human diseases and response to therapy.

摘要

质谱(MS)已成为代谢组学研究不可或缺的工具。然而,由于缺乏适用的实验平台、合适的算法、软件以及对细胞异质性和亚群的定量分析,在单细胞水平上进行全局代谢组学分析仍然具有挑战性。我们结合单探针单细胞 MS(SCMS)实验技术和一个生物信息学软件包 SinCHet-MS(用于质谱的单细胞异质性),来描述肿瘤异质性的变化,量化细胞亚群,并对每个亚群的代谢物生物标志物进行优先级排序。作为原理验证研究,我们使用了两种黑色素瘤癌细胞系,原发性(WM115;耐药性较低)和转移性(WM266-4;耐药性较高)作为模型。我们的结果表明,在用抗癌药物vemurafenib 治疗后,WM115 细胞中出现了一个新的亚群,而 WM266-4 细胞中现有的亚群比例发生了变化。此外,可以对每个亚群的代谢物进行优先级排序。将 SCMS 实验技术与生物信息学工具相结合,我们的无标记方法可用于定量研究细胞异质性,为进一步研究确定标志物,并提高对人类疾病中细胞代谢和对治疗反应的理解。

相似文献

1
Quantifying Cell Heterogeneity and Subpopulations Using Single Cell Metabolomics.
Anal Chem. 2023 May 9;95(18):7127-7133. doi: 10.1021/acs.analchem.2c05245. Epub 2023 Apr 28.
6
T-Probe: An Integrated Microscale Device for Online In Situ Single Cell Analysis and Metabolic Profiling Using Mass Spectrometry.
Anal Chem. 2018 Sep 18;90(18):11078-11085. doi: 10.1021/acs.analchem.8b02927. Epub 2018 Aug 29.
7
Chemical tagging mass spectrometry: an approach for single-cell omics.
Anal Bioanal Chem. 2023 Nov;415(28):6901-6913. doi: 10.1007/s00216-023-04850-0. Epub 2023 Jul 19.
8
Single Cell Mass Spectrometry With a Robotic Micromanipulation System for Cell Metabolite Analysis.
IEEE Trans Biomed Eng. 2022 Jan;69(1):325-333. doi: 10.1109/TBME.2021.3093097. Epub 2021 Dec 23.
9
10
MultiAlign: a multiple LC-MS analysis tool for targeted omics analysis.
BMC Bioinformatics. 2013 Feb 12;14:49. doi: 10.1186/1471-2105-14-49.

引用本文的文献

1
Developing a Cell Quenching Method to Facilitate Single Cell Mass Spectrometry Metabolomics Studies.
JACS Au. 2025 May 6;5(5):2379-2387. doi: 10.1021/jacsau.5c00327. eCollection 2025 May 26.
2
MMEASE: enhanced analytical workflow for single-cell metabolomics.
Nucleic Acids Res. 2025 Jul 7;53(W1):W390-W397. doi: 10.1093/nar/gkaf363.
3
Exploring Single-Probe Single-Cell Mass Spectrometry: Current Trends and Future Directions.
Anal Chem. 2025 Mar 11;97(9):4750-4762. doi: 10.1021/acs.analchem.4c06824. Epub 2025 Feb 25.
5
Single Cell mass spectrometry: Towards quantification of small molecules in individual cells.
Trends Analyt Chem. 2024 May;174. doi: 10.1016/j.trac.2024.117657. Epub 2024 Mar 19.

本文引用的文献

1
Single-Cell Characterization of the Immune Microenvironment of Melanoma Brain and Leptomeningeal Metastases.
Clin Cancer Res. 2021 Jul 15;27(14):4109-4125. doi: 10.1158/1078-0432.CCR-21-1694. Epub 2021 May 25.
2
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights.
Nucleic Acids Res. 2021 Jul 2;49(W1):W388-W396. doi: 10.1093/nar/gkab382.
4
Ultrafast Microelectrophoresis: Behind Direct Mass Spectrometry Measurements of Proteins and Metabolites in Living Cell/Cells.
Anal Chem. 2019 Aug 20;91(16):10441-10447. doi: 10.1021/acs.analchem.9b00716. Epub 2019 Jun 27.
5
Single-Cell RNA-Seq Technologies and Related Computational Data Analysis.
Front Genet. 2019 Apr 5;10:317. doi: 10.3389/fgene.2019.00317. eCollection 2019.
6
Integrating a generalized data analysis workflow with the Single-probe mass spectrometry experiment for single cell metabolomics.
Anal Chim Acta. 2019 Aug 8;1064:71-79. doi: 10.1016/j.aca.2019.03.006. Epub 2019 Mar 11.
7
Metabolomic Studies of Live Single Cancer Stem Cells Using Mass Spectrometry.
Anal Chem. 2019 Feb 5;91(3):2384-2391. doi: 10.1021/acs.analchem.8b05166. Epub 2019 Jan 8.
10
Metabolic Noise and Distinct Subpopulations Observed by Single Cell LAESI Mass Spectrometry of Plant Cells .
Front Plant Sci. 2018 Nov 15;9:1646. doi: 10.3389/fpls.2018.01646. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验