Suppr超能文献

人工智能读片在增强结核病诊断和消除中的应用。

The rise of artificial intelligence reading of chest X-rays for enhanced TB diagnosis and elimination.

机构信息

Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada, Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Montreal, QC, Canada, McGill International TB Centre, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.

Stop TB Partnership, Geneva, Switzerland, Division of Infectious Diseases and Tropical Medicine, Heidelberg University Hospital, Heidelberg, Germany.

出版信息

Int J Tuberc Lung Dis. 2023 May 1;27(5):367-372. doi: 10.5588/ijtld.22.0687.

Abstract

We provide an overview of the latest evidence on computer-aided detection (CAD) software for automated interpretation of chest radiographs (CXRs) for TB detection. CAD is a useful tool that can assist in rapid and consistent CXR interpretation for TB. CAD can achieve high sensitivity TB detection among people seeking care with symptoms of TB and in population-based screening, has accuracy on-par with human readers. However, implementation challenges remain. Due to diagnostic heterogeneity between settings and sub-populations, users need to select threshold scores rather than use pre-specified ones, but some sites may lack the resources and data to do so. Efficient standardisation is further complicated by frequent updates and new CAD versions, which also challenges implementation and comparison. CAD has not been validated for TB diagnosis in children and its accuracy for identifying non-TB abnormalities remains to be evaluated. A number of economic and political issues also remain to be addressed through regulation for CAD to avoid furthering health inequities. Although CAD-based CXR analysis has proven remarkably accurate for TB detection in adults, the above issues need to be addressed to ensure that the technology meets the needs of high-burden settings and vulnerable sub-populations.

摘要

我们提供了计算机辅助检测 (CAD) 软件在结核病检测方面自动解读胸部 X 光片 (CXR) 的最新证据概述。CAD 是一种有用的工具,可以帮助快速、一致地解读 CXR 以检测结核病。CAD 可以在有结核病症状的就诊者和基于人群的筛查中实现高灵敏度的结核病检测,其准确性与人类读者相当。然而,实施仍面临挑战。由于设置和亚人群之间的诊断异质性,用户需要选择阈值分数而不是使用预设的分数,但一些地方可能缺乏这样做的资源和数据。由于频繁的更新和新的 CAD 版本,有效的标准化也变得更加复杂,这也对实施和比较提出了挑战。CAD 尚未在儿童结核病诊断中得到验证,其识别非结核病异常的准确性仍有待评估。还需要通过监管来解决一些经济和政治问题,以避免 CAD 进一步加剧卫生不公平。尽管基于 CAD 的 CXR 分析已被证明在成人结核病检测方面非常准确,但仍需要解决上述问题,以确保该技术能够满足高负担地区和弱势亚人群的需求。

相似文献

1
The rise of artificial intelligence reading of chest X-rays for enhanced TB diagnosis and elimination.
Int J Tuberc Lung Dis. 2023 May 1;27(5):367-372. doi: 10.5588/ijtld.22.0687.
7
Application of artificial intelligence in digital chest radiography reading for pulmonary tuberculosis screening.
Chronic Dis Transl Med. 2021 Mar 3;7(1):35-40. doi: 10.1016/j.cdtm.2021.02.001. eCollection 2021 Mar.

引用本文的文献

1
Strengthening the TB response with artificial intelligence and the right to health.
IJTLD Open. 2025 Sep 10;2(9):548-551. doi: 10.5588/ijtldopen.25.0271. eCollection 2025 Sep.
2
Lung and abdominal ultrasound accuracy for tuberculosis: An Indian prospective cohort study.
PLoS One. 2025 Sep 3;20(9):e0329670. doi: 10.1371/journal.pone.0329670. eCollection 2025.
4
Impact of the use of the ultra-portable digital x-ray with CAD4TB for active case finding for tuberculosis in Nigeria.
Front Digit Health. 2025 Jun 30;7:1559203. doi: 10.3389/fdgth.2025.1559203. eCollection 2025.
5
Improving meningitis surveillance and diagnosis with machine learning: Insights from São Paulo.
PLOS Digit Health. 2025 Jul 10;4(7):e0000925. doi: 10.1371/journal.pdig.0000925. eCollection 2025 Jul.
6
Integration of AI and ML in Tuberculosis (TB) Management: From Diagnosis to Drug Discovery.
Diseases. 2025 Jun 11;13(6):184. doi: 10.3390/diseases13060184.
7
Evaluating InferVision's Computer-Aided Detection (CAD) algorithm for Tuberculosis (TB) screening, Lusaka, Zambia.
PLOS Glob Public Health. 2025 Jun 18;5(6):e0003955. doi: 10.1371/journal.pgph.0003955. eCollection 2025.
9
The performance of computer-aided detection for chest radiography in tuberculosis screening: a population-based retrospective cohort study.
Emerg Microbes Infect. 2025 Dec;14(1):2470998. doi: 10.1080/22221751.2025.2470998. Epub 2025 Apr 28.
10
A Critical Review of the Prospect of Integrating Artificial Intelligence in Infectious Disease Diagnosis and Prognosis.
Interdiscip Perspect Infect Dis. 2025 Mar 6;2025:6816002. doi: 10.1155/ipid/6816002. eCollection 2025.

本文引用的文献

1
Comparing different versions of computer-aided detection products when reading chest X-rays for tuberculosis.
PLOS Digit Health. 2022 Jun 14;1(6):e0000067. doi: 10.1371/journal.pdig.0000067. eCollection 2022 Jun.
2
User perspectives on the use of X-rays and computer-aided detection for TB.
Int J Tuberc Lung Dis. 2022 Nov 1;26(11):1083-1085. doi: 10.5588/ijtld.22.0232.
8
Triage of Persons With Tuberculosis Symptoms Using Artificial Intelligence-Based Chest Radiograph Interpretation: A Cost-Effectiveness Analysis.
Open Forum Infect Dis. 2021 Dec 15;8(12):ofab567. doi: 10.1093/ofid/ofab567. eCollection 2021 Dec.
9
Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis.
Sci Rep. 2021 Dec 13;11(1):23895. doi: 10.1038/s41598-021-03265-0.
10
Costs and cost-effectiveness of a comprehensive tuberculosis case finding strategy in Zambia.
PLoS One. 2021 Sep 9;16(9):e0256531. doi: 10.1371/journal.pone.0256531. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验