Suppr超能文献

动脉粥样硬化中的血管内皮力学。

Endothelial mechanobiology in atherosclerosis.

机构信息

Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.

Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China.

出版信息

Cardiovasc Res. 2023 Jul 6;119(8):1656-1675. doi: 10.1093/cvr/cvad076.

Abstract

Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.

摘要

心血管疾病(CVD)是一个严重的健康挑战,在全球范围内导致的死亡人数超过癌症。血管内皮细胞形成血管的内层,在维持血管完整性和内稳态方面起着核心作用,并且与血流直接接触。过去一个世纪的研究表明,血管壁的机械扰动有助于动脉粥样硬化的形成和发展。虽然动脉的直段暴露于持续的层流和生理高剪切力,但分支点附近或弯曲血管中的血流可能表现出“紊乱”的流动。临床研究以及精心控制的体外分析证实,这些紊乱流动的区域,包括低剪切力、再循环、振荡或侧向流动,是动脉粥样硬化病变形成的优选部位。由于它们在血流稳态中的关键作用,血管内皮细胞(EC)具有机械感受器机制,使它们能够快速对机械力的变化作出反应,并执行特定于上下文的适应性反应来调节 EC 功能。这篇综述总结了目前对内皮细胞力学的理解,这可以指导识别新的治疗靶点,以减缓或逆转动脉粥样硬化的进展。

相似文献

1
Endothelial mechanobiology in atherosclerosis.
Cardiovasc Res. 2023 Jul 6;119(8):1656-1675. doi: 10.1093/cvr/cvad076.
2
Role of shear stress-induced red blood cell released ATP in atherosclerosis.
Am J Physiol Heart Circ Physiol. 2025 Apr 1;328(4):H774-H791. doi: 10.1152/ajpheart.00875.2024. Epub 2025 Feb 21.
3
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
4
Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review.
Cardiovasc Res. 2013 Jul 15;99(2):242-50. doi: 10.1093/cvr/cvt044. Epub 2013 Mar 3.
6
From gene to mechanics: a comprehensive insight into the mechanobiology of LMNA mutations in cardiomyopathy.
Cell Commun Signal. 2024 Mar 27;22(1):197. doi: 10.1186/s12964-024-01546-5.
10
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.

引用本文的文献

1
PKM2 regulates angiogenic activation via ANGPT2 in endothelial cells.
Sci Rep. 2025 Aug 26;15(1):31448. doi: 10.1038/s41598-025-17147-2.
2
Natural medicines target tumor vascular microenvironment to inhibit tumor.
Genes Dis. 2025 Apr 8;12(6):101623. doi: 10.1016/j.gendis.2025.101623. eCollection 2025 Nov.
4
Recent Advances in Nanozymes for the Treatment of Atherosclerosis.
Int J Nanomedicine. 2025 Jul 29;20:9447-9472. doi: 10.2147/IJN.S540010. eCollection 2025.
5
Endovascular structures of the basilar artery as forms of the basilar nonfusion spectrum.
Sci Rep. 2025 Aug 1;15(1):28192. doi: 10.1038/s41598-025-14558-z.
6
Engineering Mechanical Microenvironments: Integration of Substrate and Flow Mechanics Reveals the Impact on the Endothelial Glycocalyx.
ACS Biomater Sci Eng. 2025 Jun 9;11(6):3416-3431. doi: 10.1021/acsbiomaterials.4c02401. Epub 2025 May 28.
7
Multidimensional excavation of the current status and trends of mechanobiology in cardiovascular homeostasis and remodeling within 20 years.
Mechanobiol Med. 2025 Mar 19;3(2):100127. doi: 10.1016/j.mbm.2025.100127. eCollection 2025 Jun.
8
Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage.
Mechanobiol Med. 2024 Apr 29;2(3):100069. doi: 10.1016/j.mbm.2024.100069. eCollection 2024 Sep.
9
The role of deubiquitinases in cardiovascular diseases: mechanisms and therapeutic implications.
Front Cardiovasc Med. 2025 May 1;12:1582049. doi: 10.3389/fcvm.2025.1582049. eCollection 2025.
10
Comparative Predictive Value of the TyG Index and UHR for Lower Extremity Artery Disease in Type 2 Diabetes: A Retrospective Analysis.
Diabetes Metab Syndr Obes. 2025 Apr 29;18:1341-1351. doi: 10.2147/DMSO.S496727. eCollection 2025.

本文引用的文献

1
Cathepsin K contributed to disturbed flow-induced atherosclerosis is dependent on integrin-actin cytoskeleton-NF-κB pathway.
Genes Dis. 2022 Apr 25;10(2):583-595. doi: 10.1016/j.gendis.2022.03.020. eCollection 2023 Mar.
2
Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches.
Biomed Pharmacother. 2023 Feb;158:114198. doi: 10.1016/j.biopha.2022.114198. Epub 2023 Jan 3.
4
Conductance Artery Wall Layers and Their Respective Roles in the Clearance Functions.
Arterioscler Thromb Vasc Biol. 2022 Sep;42(9):e253-e272. doi: 10.1161/ATVBAHA.122.317759. Epub 2022 Aug 4.
6
Molecular mechanisms of leukocyte β2 integrin activation.
Blood. 2022 Jun 16;139(24):3480-3492. doi: 10.1182/blood.2021013500.
7
Endothelial shear stress signal transduction and atherogenesis: From mechanisms to therapeutics.
Pharmacol Ther. 2022 Jul;235:108152. doi: 10.1016/j.pharmthera.2022.108152. Epub 2022 Feb 2.
8
Mechanical forces and metabolic changes cooperate to drive cellular memory and endothelial phenotypes.
Curr Top Membr. 2021;87:199-253. doi: 10.1016/bs.ctm.2021.07.003. Epub 2021 Sep 25.
10
Activation of Smad2/3 signaling by low fluid shear stress mediates artery inward remodeling.
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37). doi: 10.1073/pnas.2105339118.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验