Suppr超能文献

双光子合成孔径显微镜用于微创快速 3D 成像深层组织中天然亚细胞行为。

Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue.

机构信息

Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Multi-dimension & Multi-scale Computational Photography (MMCP), Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China; Hangzhou Zhuoxi Institute of Brain and Intelligence, Hangzhou 311100, China.

Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.

出版信息

Cell. 2023 May 25;186(11):2475-2491.e22. doi: 10.1016/j.cell.2023.04.016. Epub 2023 May 12.

Abstract

Holistic understanding of physio-pathological processes requires noninvasive 3D imaging in deep tissue across multiple spatial and temporal scales to link diverse transient subcellular behaviors with long-term physiogenesis. Despite broad applications of two-photon microscopy (TPM), there remains an inevitable tradeoff among spatiotemporal resolution, imaging volumes, and durations due to the point-scanning scheme, accumulated phototoxicity, and optical aberrations. Here, we harnessed the concept of synthetic aperture radar in TPM to achieve aberration-corrected 3D imaging of subcellular dynamics at a millisecond scale for over 100,000 large volumes in deep tissue, with three orders of magnitude reduction in photobleaching. With its advantages, we identified direct intercellular communications through migrasome generation following traumatic brain injury, visualized the formation process of germinal center in the mouse lymph node, and characterized heterogeneous cellular states in the mouse visual cortex, opening up a horizon for intravital imaging to understand the organizations and functions of biological systems at a holistic level.

摘要

要全面理解生理病理过程,需要在多个时空尺度上对深层组织进行非侵入式的 3D 成像,将各种短暂的亚细胞行为与长期的生理发生联系起来。尽管双光子显微镜(TPM)有广泛的应用,但由于点扫描方案、累积光毒性和像差的原因,其空间分辨率、成像体积和持续时间之间仍然存在不可避免的权衡。在这里,我们利用合成孔径雷达的概念在 TPM 中实现了亚细胞动力学的像差校正 3D 成像,在深组织中对超过 100,000 个大容量进行了毫秒级的成像,光漂白减少了三个数量级。利用这一优势,我们通过创伤性脑损伤后迁移小体的产生来识别直接的细胞间通讯,可视化了小鼠淋巴结生发中心的形成过程,并描述了小鼠视觉皮层中异质细胞状态,为活体成像开辟了一个新的领域,以便从整体水平理解生物系统的组织和功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验