Suppr超能文献

利用家族数据设计孟德尔随机化,使其在人口分层方面具有可证明的稳健性。

Leveraging family data to design Mendelian randomization that is provably robust to population stratification.

机构信息

Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA;

Department of Computer Science, University of California Los Angeles, Los Angeles, California 90095, USA.

出版信息

Genome Res. 2023 Jul;33(7):1032-1041. doi: 10.1101/gr.277664.123. Epub 2023 May 17.

Abstract

Mendelian randomization (MR) has emerged as a powerful approach to leverage genetic instruments to infer causality between pairs of traits in observational studies. However, the results of such studies are susceptible to biases owing to weak instruments, as well as the confounding effects of population stratification and horizontal pleiotropy. Here, we show that family data can be leveraged to design MR tests that are provably robust to confounding from population stratification, assortative mating, and dynastic effects. We show in simulations that our approach, MR-Twin, is robust to confounding from population stratification and is not affected by weak instrument bias, whereas standard MR methods yield inflated false positive rates. We then conduct an exploratory analysis of MR-Twin and other MR methods applied to 121 trait pairs in the UK Biobank data set. Our results suggest that confounding from population stratification can lead to false positives for existing MR methods, whereas MR-Twin is immune to this type of confounding, and that MR-Twin can help assess whether traditional approaches may be inflated owing to confounding from population stratification.

摘要

孟德尔随机化(MR)已成为一种强大的方法,可以利用遗传工具在观察性研究中推断两个特征之间的因果关系。然而,由于弱工具以及群体分层和水平多效性的混杂效应,这些研究的结果可能存在偏差。在这里,我们展示了如何利用家庭数据设计 MR 检验,这些检验可以证明不受群体分层、同型交配和王朝效应混杂的影响。我们在模拟中表明,我们的方法 MR-Twin 不受群体分层的混杂影响,也不受弱工具偏差的影响,而标准的 MR 方法则会导致虚假阳性率升高。然后,我们对 UK Biobank 数据集的 121 个特征对进行了 MR-Twin 和其他 MR 方法的探索性分析。我们的结果表明,群体分层引起的混杂可能导致现有 MR 方法的假阳性,而 MR-Twin 不受这种混杂的影响,并且 MR-Twin 可以帮助评估传统方法是否因群体分层引起的混杂而被夸大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0835/10538495/68bd819ec9d4/1032f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验