Suppr超能文献

低分子量巯基在宿主-微生物界面的新兴作用。

Emerging roles of low-molecular-weight thiols at the host-microbe interface.

机构信息

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.

Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.

出版信息

Curr Opin Chem Biol. 2023 Aug;75:102322. doi: 10.1016/j.cbpa.2023.102322. Epub 2023 May 16.

Abstract

Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.

摘要

低分子量(LMW)巯基是一类丰富的半胱氨酸衍生的小分子,存在于所有形式的生命中,可维持细胞内的还原条件。虽然它们对细胞氧化还原稳态的贡献已得到充分证实,但 LMW 巯基也可以介导细胞生理学的其他方面,包括微生物和宿主细胞之间的细胞间相互作用。在这里,我们讨论了这些氧化还原活性代谢物在宿主-微生物界面的新作用。我们首先提供了一种用于 LMW-硫醇发现的化学和计算方法概述。接下来,我们强调了 LMW 巯基在感染细胞中调节毒力的机制。最后,我们描述了微生物对这些化合物的代谢如何影响宿主生理学。

相似文献

1
Emerging roles of low-molecular-weight thiols at the host-microbe interface.
Curr Opin Chem Biol. 2023 Aug;75:102322. doi: 10.1016/j.cbpa.2023.102322. Epub 2023 May 16.
2
Low-molecular-weight thiols in plants: functional and analytical implications.
Arch Biochem Biophys. 2014 Oct 15;560:83-99. doi: 10.1016/j.abb.2014.07.018. Epub 2014 Jul 21.
3
Low-molecular-weight thiols in thiol-disulfide exchange.
Antioxid Redox Signal. 2013 May 1;18(13):1642-53. doi: 10.1089/ars.2012.4964. Epub 2012 Dec 18.
5
Thiol Redox and pKa Properties of Mycothiol, the Predominant Low-Molecular-Weight Thiol Cofactor in the Actinomycetes.
Chembiochem. 2016 Sep 15;17(18):1689-92. doi: 10.1002/cbic.201600228. Epub 2016 Jul 28.
6
The versatile low-molecular-weight thiols: Beyond cell protection.
Bioessays. 2015 Dec;37(12):1262-7. doi: 10.1002/bies.201500067. Epub 2015 Oct 30.
7
New roles for glutathione: Modulators of bacterial virulence and pathogenesis.
Redox Biol. 2021 Aug;44:102012. doi: 10.1016/j.redox.2021.102012. Epub 2021 May 29.
8
A microbial transporter of the dietary antioxidant ergothioneine.
Cell. 2022 Nov 23;185(24):4526-4540.e18. doi: 10.1016/j.cell.2022.10.008. Epub 2022 Nov 7.
9
Redox regulation by reversible protein S-thiolation in Gram-positive bacteria.
Redox Biol. 2019 Jan;20:130-145. doi: 10.1016/j.redox.2018.08.017. Epub 2018 Aug 24.
10
Low-Molecular-Weight Thiols and Thioredoxins Are Important Players in Hg(II) Resistance in Thermus thermophilus HB27.
Appl Environ Microbiol. 2018 Jan 2;84(2). doi: 10.1128/AEM.01931-17. Print 2018 Jan 15.

引用本文的文献

1
CH•••S hydrogen bonds drive molecular recognition of ergothioneine by the microbial transporter.
bioRxiv. 2025 Jul 31:2025.07.28.667264. doi: 10.1101/2025.07.28.667264.
2
Staphylococcus aureus exploits lipoic acid salvage to combat host oxidative stress.
Cell Rep. 2025 Aug 26;44(8):116095. doi: 10.1016/j.celrep.2025.116095. Epub 2025 Aug 2.
3
Discovery of a Widespread Polyamine-Low-Molecular-Weight Thiol Hybrid Pathway in .
ACS Infect Dis. 2025 Jul 17. doi: 10.1021/acsinfecdis.5c00286.
4
5
Advances in the synthesis and applications of macrocyclic polyamines.
R Soc Open Sci. 2024 Jun 19;11(6):231979. doi: 10.1098/rsos.231979. eCollection 2024 Jun.
6
The role of metals in hypothiocyanite resistance in .
J Bacteriol. 2024 Aug 22;206(8):e0009824. doi: 10.1128/jb.00098-24. Epub 2024 Jul 17.
7
The role of metals in hypothiocyanite resistance in .
bioRxiv. 2024 Mar 8:2024.03.07.583962. doi: 10.1101/2024.03.07.583962.

本文引用的文献

1
Diet-Derived Antioxidants: The Special Case of Ergothioneine.
Annu Rev Food Sci Technol. 2023 Mar 27;14:323-345. doi: 10.1146/annurev-food-060822-122236. Epub 2023 Jan 9.
2
Discovery and structure of a widespread bacterial ABC transporter specific for ergothioneine.
Nat Commun. 2022 Dec 8;13(1):7586. doi: 10.1038/s41467-022-35277-3.
3
A microbial transporter of the dietary antioxidant ergothioneine.
Cell. 2022 Nov 23;185(24):4526-4540.e18. doi: 10.1016/j.cell.2022.10.008. Epub 2022 Nov 7.
4
Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from .
JACS Au. 2022 Aug 16;2(9):2098-2107. doi: 10.1021/jacsau.2c00365. eCollection 2022 Sep 26.
5
Biosynthesis of selenium-containing small molecules in diverse microorganisms.
Nature. 2022 Oct;610(7930):199-204. doi: 10.1038/s41586-022-05174-2. Epub 2022 Sep 7.
6
Streptococcus pyogenes Hijacks Host Glutathione for Growth and Innate Immune Evasion.
mBio. 2022 Jun 28;13(3):e0067622. doi: 10.1128/mbio.00676-22. Epub 2022 Apr 25.
7
-Acetyl-Cysteinylated Streptophenazines from .
J Nat Prod. 2022 May 27;85(5):1239-1247. doi: 10.1021/acs.jnatprod.1c01123. Epub 2022 Apr 14.
9
New roles for glutathione: Modulators of bacterial virulence and pathogenesis.
Redox Biol. 2021 Aug;44:102012. doi: 10.1016/j.redox.2021.102012. Epub 2021 May 29.
10
LanCLs add glutathione to dehydroamino acids generated at phosphorylated sites in the proteome.
Cell. 2021 May 13;184(10):2680-2695.e26. doi: 10.1016/j.cell.2021.04.001. Epub 2021 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验