Zeng Lingyou, Chen Yanju, Sun Mingzi, Huang Qizheng, Sun Kaian, Ma Jingyuan, Li Jiong, Tan Hao, Li Menggang, Pan Yuan, Liu Yunqi, Luo Mingchuan, Huang Bolong, Guo Shaojun
School of Materials Science and Engineering, Peking University, Beijing 100871, China.
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China.
J Am Chem Soc. 2023 Aug 16;145(32):17577-17587. doi: 10.1021/jacs.3c02570. Epub 2023 May 30.
Designing efficient and durable bifunctional catalysts for 5-hydroxymethylfurfural (HMF) oxidation reaction (HMFOR) and hydrogen evolution reaction (HER) is desirable for the co-production of biomass-upgraded chemicals and sustainable hydrogen, which is limited by the competitive adsorption of hydroxyl species (OH) and HMF molecules. Here, we report a class of Rh-O/Ni(Fe) atomic site on nanoporous mesh-type layered double hydroxides with atomic-scale cooperative adsorption centers for highly active and stable alkaline HMFOR and HER catalysis. A low cell voltage of 1.48 V is required to achieve 100 mA cm in an integrated electrolysis system along with excellent stability (>100 h). infrared and X-ray absorption spectroscopic probes unveil that HMF molecules are selectively adsorbed and activated over the single-atom Rh sites and oxidized by in situ-formed electrophilic OH species on neighboring Ni sites. Theoretical studies further demonstrate that the strong d-d orbital coupling interactions between atomic-level Rh and surrounding Ni atoms in the special Rh-O/Ni(Fe) structure can greatly facilitate surface electronic exchange-and-transfer capabilities with the adsorbates (OH and HMF molecules) and intermediates for efficient HMFOR and HER. We also reveal that the Fe sites in Rh-O/Ni(Fe) structure can promote the electrocatalytic stability of the catalyst. Our findings provide new insights into catalyst design for complex reactions involving competitive adsorptions of multiple intermediates.
设计用于5-羟甲基糠醛(HMF)氧化反应(HMFOR)和析氢反应(HER)的高效且耐用的双功能催化剂,对于生物质升级化学品和可持续氢气的联产是很有必要的,然而这受到羟基物种(OH)和HMF分子竞争性吸附的限制。在此,我们报道了一类纳米多孔网状层状双氢氧化物上的Rh-O/Ni(Fe)原子位点,其具有原子尺度的协同吸附中心,用于高活性和稳定的碱性HMFOR和HER催化。在集成电解系统中,实现100 mA cm需要1.48 V的低电池电压,同时具有出色的稳定性(>100 h)。红外和X射线吸收光谱探针揭示,HMF分子在单原子Rh位点上被选择性吸附和活化,并被相邻Ni位点上原位形成的亲电OH物种氧化。理论研究进一步表明,特殊Rh-O/Ni(Fe)结构中原子级Rh与周围Ni原子之间强烈的d-d轨道耦合相互作用,能够极大地促进与吸附质(OH和HMF分子)和中间体的表面电子交换和转移能力,以实现高效的HMFOR和HER。我们还揭示了Rh-O/Ni(Fe)结构中的Fe位点可以促进催化剂的电催化稳定性。我们的研究结果为涉及多种中间体竞争性吸附的复杂反应的催化剂设计提供了新的见解。