Suppr超能文献

使用带有溶剂化的分子模型预测 I 类 MHC-肽-TCR 复合物形成中的肽和 TCR CDR3 环。

Prediction of Peptide and TCR CDR3 Loops in Formation of Class I MHC-Peptide-TCR Complexes Using Molecular Models with Solvation.

机构信息

Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.

Titus Family Department of Clinical Pharmacy, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA.

出版信息

Methods Mol Biol. 2023;2673:273-287. doi: 10.1007/978-1-0716-3239-0_19.

Abstract

Formation of major histocompatibility (MHC)-peptide-T cell receptor (TCR) complexes is central to initiation of an adaptive immune response. These complexes form through initial stabilization of the MHC fold via binding of a short peptide, and subsequent interaction of the TCR to form a ternary complex, with contacts made predominantly through the complementarity-determining region (CDR) loops of the TCR. Stimulation of an immune response is central to cancer immunotherapy. This approach depends on identification of the appropriate combinations of MHC molecules, peptides, and TCRs to elicit an antitumor immune response. This prediction is a current challenge in computational biochemistry. In this chapter, we introduce a predictive method that involves generation of multiple peptides and TCR CDR 3 loop conformations, solvation of these conformers in the context of the MHC-peptide-TCR ternary complex, extraction of parameters from the generated complexes, and use of an AI model to evaluate the potential for the assembled ternary complex to support an immune response.

摘要

主要组织相容性复合体(MHC)-肽-T 细胞受体(TCR)复合物的形成是启动适应性免疫反应的核心。这些复合物通过 MHC 折叠的初始稳定形成,通过结合短肽,随后 TCR 的相互作用形成三元复合物,主要通过 TCR 的互补决定区(CDR)环形成接触。免疫反应的刺激是癌症免疫治疗的核心。这种方法取决于识别适当的 MHC 分子、肽和 TCR 组合,以引发抗肿瘤免疫反应。这种预测是计算生物化学中的一个当前挑战。在本章中,我们介绍了一种预测方法,该方法涉及生成多种肽和 TCR CDR3 环构象,在 MHC-肽-TCR 三元复合物的背景下对这些构象进行溶剂化处理,从生成的复合物中提取参数,并使用人工智能模型评估组装的三元复合物支持免疫反应的潜力。

相似文献

2
T-cell receptor (TCR)-peptide specificity overrides affinity-enhancing TCR-major histocompatibility complex interactions.
J Biol Chem. 2014 Jan 10;289(2):628-38. doi: 10.1074/jbc.M113.522110. Epub 2013 Nov 6.
3
Structural insights into the editing of germ-line-encoded interactions between T-cell receptor and MHC class II by Vα CDR3.
Proc Natl Acad Sci U S A. 2012 Sep 11;109(37):14960-5. doi: 10.1073/pnas.1207186109. Epub 2012 Aug 28.
5
A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC.
J Exp Med. 2011 Jan 17;208(1):91-102. doi: 10.1084/jem.20100725. Epub 2011 Jan 3.
6
TcR recognition of the MHC-peptide dimer: structural properties of a ternary complex.
J Mol Biol. 1996 Aug 9;261(1):72-89. doi: 10.1006/jmbi.1996.0442.
8
MPID-T: database for sequence-structure-function information on T-cell receptor/peptide/MHC interactions.
Appl Bioinformatics. 2006;5(2):111-4. doi: 10.2165/00822942-200605020-00005.
10
Predicting interactions between T cell receptors and MHC-peptide complexes.
Mol Immunol. 2011 Jan;48(4):553-62. doi: 10.1016/j.molimm.2010.10.014. Epub 2010 Nov 23.

本文引用的文献

1
Prediction of Water Distributions and Displacement at Protein-Ligand Interfaces.
J Chem Inf Model. 2022 Mar 28;62(6):1489-1497. doi: 10.1021/acs.jcim.1c01266. Epub 2022 Mar 9.
2
A guide to cancer immunotherapy: from T cell basic science to clinical practice.
Nat Rev Immunol. 2020 Nov;20(11):651-668. doi: 10.1038/s41577-020-0306-5. Epub 2020 May 20.
3
TCR3d: The T cell receptor structural repertoire database.
Bioinformatics. 2019 Dec 15;35(24):5323-5325. doi: 10.1093/bioinformatics/btz517.
4
The era of immunogenomics/immunopharmacogenomics.
J Hum Genet. 2018 Jul;63(8):865-875. doi: 10.1038/s10038-018-0468-1. Epub 2018 May 21.
5
Human T Cell Development, Localization, and Function throughout Life.
Immunity. 2018 Feb 20;48(2):202-213. doi: 10.1016/j.immuni.2018.01.007.
6
NetMHCpan-4.0: Improved Peptide-MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data.
J Immunol. 2017 Nov 1;199(9):3360-3368. doi: 10.4049/jimmunol.1700893. Epub 2017 Oct 4.
7
Quantifiable predictive features define epitope-specific T cell receptor repertoires.
Nature. 2017 Jul 6;547(7661):89-93. doi: 10.1038/nature22383. Epub 2017 Jun 21.
9
Mechanics of T cell receptor gene rearrangement.
Curr Opin Immunol. 2009 Apr;21(2):133-9. doi: 10.1016/j.coi.2009.03.009. Epub 2009 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验