Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA.
Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Medicine, New York, NY, USA.
Nat Microbiol. 2023 Jul;8(7):1280-1292. doi: 10.1038/s41564-023-01396-w. Epub 2023 Jun 5.
For Plasmodium falciparum, the most widespread and virulent malaria parasite that infects humans, persistence depends on continuous asexual replication in red blood cells, while transmission to their mosquito vector requires asexual blood-stage parasites to differentiate into non-replicating gametocytes. This decision is controlled by stochastic derepression of a heterochromatin-silenced locus encoding AP2-G, the master transcription factor of sexual differentiation. The frequency of ap2-g derepression was shown to be responsive to extracellular phospholipid precursors but the mechanism linking these metabolites to epigenetic regulation of ap2-g was unknown. Through a combination of molecular genetics, metabolomics and chromatin profiling, we show that this response is mediated by metabolic competition for the methyl donor S-adenosylmethionine between histone methyltransferases and phosphoethanolamine methyltransferase, a critical enzyme in the parasite's pathway for de novo phosphatidylcholine synthesis. When phosphatidylcholine precursors are scarce, increased consumption of SAM for de novo phosphatidylcholine synthesis impairs maintenance of the histone methylation responsible for silencing ap2-g, increasing the frequency of derepression and sexual differentiation. This provides a key mechanistic link that explains how LysoPC and choline availability can alter the chromatin status of the ap2-g locus controlling sexual differentiation.
对于恶性疟原虫(Plasmodium falciparum),这种最广泛和最具毒性的感染人类的疟原虫,其持续存在依赖于在红细胞中的连续无性复制,而向其蚊子媒介的传播则需要无性血阶段寄生虫分化为非复制的配子体。这一决定由 AP2-G 编码的异染色质沉默基因座的随机去阻遏控制,AP2-G 是性分化的主转录因子。AP2-G 去阻遏的频率被证明对细胞外磷脂前体有反应,但这些代谢物与 AP2-G 的表观遗传调控之间的联系机制尚不清楚。通过分子遗传学、代谢组学和染色质分析的结合,我们表明这种反应是由组蛋白甲基转移酶和磷酸乙醇胺甲基转移酶之间的代谢竞争介导的,磷酸乙醇胺甲基转移酶是寄生虫从头合成磷脂酰胆碱途径中的关键酶。当磷脂酰胆碱前体稀缺时,SAM 的增加消耗用于从头合成磷脂酰胆碱会损害负责沉默 AP2-G 的组蛋白甲基化的维持,增加去阻遏和性分化的频率。这提供了一个关键的机制联系,解释了 LysoPC 和胆碱的可用性如何改变控制性分化的 AP2-G 基因座的染色质状态。